Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Baumgartner is active.

Publication


Featured researches published by Richard Baumgartner.


Neuropsychopharmacology | 2011

Imaging Drugs with and without Clinical Analgesic Efficacy

Jaymin Upadhyay; Julie Anderson; Adam J. Schwarz; Alexandre Coimbra; Richard Baumgartner; Gautam Pendse; Edward George; Lauren Nutile; Diana Wallin; James Bishop; Saujanya Neni; Gary Maier; Smriti Iyengar; Jeffery L Evelhoch; David Bleakman; Richard Hargreaves; Lino Becerra; David Borsook

The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK1 receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts.


NeuroImage | 2013

Quantifying temporal correlations: A test–retest evaluation of functional connectivity in resting-state fMRI

Mark Fiecas; Hernando Ombao; Dan van Lunen; Richard Baumgartner; Alexandre Coimbra; Dai Feng

There have been many interpretations of functional connectivity and proposed measures of temporal correlations between BOLD signals across different brain areas. These interpretations yield from many studies on functional connectivity using resting-state fMRI data that have emerged in recent years. However, not all of these studies used the same metrics for quantifying the temporal correlations between brain regions. In this paper, we use a public-domain test-retest resting-state fMRI data set to perform a systematic investigation of the stability of the metrics that are often used in resting-state functional connectivity (FC) studies. The fMRI data set was collected across three different sessions. The second session took place approximately eleven months after the first session, and the third session was an hour after the second session. The FC metrics composed of cross-correlation, partial cross-correlation, cross-coherence, and parameters based on an autoregressive model. We discussed the strengths and weaknesses of each metric. We performed ROI-level and full-brain seed-based voxelwise test-retest analyses using each FC metric to assess its stability. For both ROI-level and voxel-level analyses, we found that cross-correlation yielded more stable measurements than the other metrics. We discussed the consequences of this result on the utility of the FC metrics. We observed that for negatively correlated ROIs, their partial cross-correlation is shrunk towards zero, thus affecting the stability of their FC. For the present data set, we found greater stability in FC between the second and third sessions (one hour between sessions) compared to the first and second sessions (approximately 11months between sessions). Finally, we report that some of the metrics showed a positive association between strength and stability. In summary, the results presented in this paper suggest important implications when choosing metrics for quantifying and assessing various types of functional connectivity for resting-state fMRI studies.


NeuroImage | 2012

Modulation of CNS pain circuitry by intravenous and sublingual doses of buprenorphine.

Jaymin Upadhyay; Julie Anderson; Richard Baumgartner; Alexandre Coimbra; Adam J. Schwarz; Gautam Pendse; Diana Wallin; Lauren Nutile; James Bishop; Edward George; Igor Elman; Soujanya Sunkaraneni; Gary Maier; Smriti Iyengar; Jeffrey L. Evelhoch; David Bleakman; Richard Hargreaves; Lino Becerra; David Borsook

Buprenorphine (BUP) is a partial agonist at μ-, δ- and ORL1 (opioid receptor-like)/nociceptin receptors and antagonist at the κ-opioid receptor site. BUP is known to have both analgesic as well as antihyperalgesic effects via its central activity, and is used in the treatment of moderate to severe chronic pain conditions. Recently, it was shown that intravenous (IV) administration of 0.2mg/70 kg BUP modulates the blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) response to acute noxious stimuli in healthy human subjects. The present study extends these observations by investigating the effects of BUP dose and route of administration on central nervous system (CNS) pain circuitry. Specifically, the modulation of evoked pain BOLD responses and resting state functional connectivity was measured following IV (0.1 and 0.2mg/70 kg) and sublingual (SL) (2mg) BUP administration in healthy human subjects. While 0.1mg/70 kg IV BUP is sub-analgesic, both 0.2mg/70 kg IV BUP and 2.0mg SL BUP are analgesic doses of the drug. Evoked BOLD responses were clearly modulated in a dose-dependent manner. The analgesic doses of BUP by both routes of administration yielded a potentiation in limbic/mesolimbic circuitry and attenuation in sensorimotor/sensory-discriminative circuitry. In addition, robust decreases in functional connectivity between the putamen and the sensorimotor/sensory-discriminative structures were observed at the two analgesic doses subsequent to measuring the maximum plasma BUP concentrations (C(max)). The decreases in functional connectivity within the sensorimotor/sensory-discriminative circuitry were also observed to be dose-dependent in the IV administration cohorts. These reproducible and consistent functional CNS measures at clinically effective doses of BUP demonstrate the potential of evoked pain fMRI and resting-state functional connectivity as objective tools that can inform the process of dose selection. Such methods may be useful during early clinical phase evaluation of potential analgesics in drug development.


Drug Discovery Today | 2012

Decision-making using fMRI in clinical drug development: revisiting NK-1 receptor antagonists for pain.

David Borsook; Jaymin Upadhyay; Michael Klimas; Adam J. Schwarz; Alexandre Coimbra; Richard Baumgartner; Edward George; William Z. Potter; Thomas H. Large; David Bleakman; Jeffrey L. Evelhoch; Smriti Iyengar; Lino Becerra; Richard Hargreaves

Substance P (SP) and neurokinin-1 receptors (NK-1R) are localized within central and peripheral sensory pain pathways. The roles of SP and NK-1R in pain processing, the anatomical distribution of NK-1R and efficacy observed in preclinical pain studies involving pain and sensory sensitization models, suggested that NK-1R antagonists (NK-1RAs) would relieve pain in patient populations. Despite positive data available in preclinical tests for a role of NK-1RAs in pain, clinical studies across several pain conditions have been negative. In this review, we discuss how functional imaging-derived information on activity in pain-processing brain regions could have predicted that NK-1RAs would have a low probability of success in this therapeutic domain.


Journal of Pharmacology and Experimental Therapeutics | 2013

Parallel Buprenorphine phMRI Responses in Conscious Rodents and Healthy Human Subjects

Lino Becerra; Jaymin Upadhyay; Pei-Ching Chang; James Bishop; Julie Anderson; Richard Baumgartner; Adam J. Schwarz; Alexandre Coimbra; Diana Wallin; Lauren Nutile; Edward George; Gary Maier; Soujanya Sunkaraneni; Smriti Iyengar; Jeffrey L. Evelhoch; David Bleakman; Richard Hargreaves; David Borsook

Pharmacological magnetic resonance imaging (phMRI) is one method by which a drug’s pharmacodynamic effects in the brain can be assessed. Although phMRI has been frequently used in preclinical and clinical settings, the extent to which a phMRI signature for a compound translates between rodents and humans has not been systematically examined. In the current investigation, we aimed to build on recent clinical work in which the functional response to 0.1 and 0.2 mg/70 kg i.v. buprenorphine (partial µ-opioid receptor agonist) was measured in healthy humans. Here, we measured the phMRI response to 0.04 and 0.1 mg/kg i.v. buprenorphine in conscious, naive rats to establish the parallelism of the phMRI signature of buprenorphine across species. PhMRI of 0.04 and 0.1 mg/kg i.v. buprenorphine yielded dose-dependent activation in a brain network composed of the somatosensory cortex, cingulate, insula, striatum, thalamus, periaqueductal gray, and cerebellum. Similar dose-dependent phMRI activation was observed in the human phMRI studies. These observations indicate an overall preservation of pharmacodynamic responses to buprenorphine between conscious, naive rodents and healthy human subjects, particularly in brain regions implicated in pain and analgesia. This investigation further demonstrates the usefulness of phMRI as a translational tool in neuroscience research that can provide mechanistic insight and guide dose selection in drug development.


NeuroImage | 2010

Improved characterization of BOLD responses for evoked sensory stimuli

Jaymin Upadhyay; Gautam Pendse; Julie Anderson; Adam J. Schwarz; Richard Baumgartner; Alexandre Coimbra; James Bishop; Jamie Knudsen; Edward George; Igor D. Grachev; Smriti Iyengar; David Bleakman; Richard Hargreaves; David Borsook; Lino Becerra

Pain and somatosensory processing involves an interaction of multiple neuronal networks. One result of these complex interactions is the presence of differential responses across brain regions that may be incompletely modeled by a straightforward application of standard general linear model (GLM) approaches based solely on the applied stimulus. We examined temporal blood oxygenation-level dependent (BOLD) signatures elicited by two stimulation paradigms (brush and heat) providing innocuous and noxious stimuli. Data were acquired from 32 healthy male subjects (2 independent cohorts). Regional time courses and model-free analyses of the first cohort revealed distinct temporal features of the BOLD responses elicited during noxious versus innocuous stimulation. Specifically, a biphasic (dual peak) BOLD signal was observed in response to heat but much less so in response to brush stimuli. This signal was characterized by a stimulus-locked response along with a second peak delayed by approximately 12.5 s. A cross-validation error analysis determined a modified design matrix comprising two explanatory variables (EVs) as a parsimonious means to model the biphasic responses within a GLM framework. One EV was directly derived from the stimulation paradigm (EV1), while the second EV (EV2) was EV1 shifted by 12.5 s. The 2EV GLM analysis enabled a more detailed characterization of the elicited BOLD responses, particularly during pain processing. This was confirmed by application of the model to a second, independent cohort[AU1]. Furthermore, the delayed component of the biphasic response was strongly associated with the noxious heat stimuli, suggesting that this may represent a sensitive fMRI link of pain processing.


PLOS ONE | 2014

Pre-Treatment Whole Blood Gene Expression Is Associated with 14-Week Response Assessed by Dynamic Contrast Enhanced Magnetic Resonance Imaging in Infliximab-Treated Rheumatoid Arthritis Patients

Kenzie D. MacIsaac; Richard Baumgartner; Jia Kang; Andrey Loboda; Charles Peterfy; Julie DiCarlo; Jonathan K. Riek; Chan Beals

Approximately 30% of rheumatoid arthritis patients achieve inadequate response to anti-TNF biologics. Attempts to identify molecular biomarkers predicting response have met with mixed success. This may be attributable, in part, to the variable and subjective disease assessment endpoints with large placebo effects typically used to classify patient response. Sixty-one patients with active RA despite methotrexate treatment, and with MRI-documented synovitis, were randomized to receive infliximab or placebo. Blood was collected at baseline and genome-wide transcription in whole blood was measured using microarrays. The primary endpoint in this study was determined by measuring the transfer rate constant (Ktrans) of a gadolinium-based contrast agent from plasma to synovium using MRI. Secondary endpoints included repeated clinical assessments with DAS28(CRP), and assessments of osteitis and synovitis by the RAMRIS method. Infliximab showed greater decrease from baseline in DCE-MRI Ktrans of wrist and MCP at all visits compared with placebo (P<0.001). Statistical analysis was performed to identify genes associated with treatment-specific 14-week change in Ktrans. The 256 genes identified were used to derive a gene signature score by averaging their log expression within each patient. The resulting score correlated with improvement of Ktrans in infliximab-treated patients and with deterioration of Ktrans in placebo-treated subjects. Poor responders showed high expression of activated B-cell genes whereas good responders exhibited a gene expression pattern consistent with mobilization of neutrophils and monocytes and high levels of reticulated platelets. This gene signature was significantly associated with clinical response in two previously published whole blood gene expression studies using anti-TNF therapies. These data provide support for the hypothesis that anti-TNF inadequate responders comprise a distinct molecular subtype of RA characterized by differences in pre-treatment blood mRNA expression. They also highlight the importance of placebo controls and robust, objective endpoints in biomarker discovery. Trial Registration: ClinicalTrials.gov NCT01313520


Journal of Magnetic Resonance Imaging | 2010

Robust, unbiased general linear model estimation of phMRI signal amplitude in the presence of variation in the temporal response profile.

Gautam Pendse; Adam J. Schwarz; Richard Baumgartner; Alexandre Coimbra; Jaymin Upadhyay; David Borsook; Lino Becerra

To determine a simple yet robust method to generate parsimonious design matrices that accurately estimate the “pharmacological MRI” (phMRI) response amplitude in the presence of both confounding signals and variability in temporal profile. Variability in the temporal response profile of phMRI time series data is often observed. If not properly accounted for, this variation can result in inaccurate and unevenly biased signal amplitude estimates when modeled within a general linear model (GLM) framework.


Journal of Biopharmaceutical Statistics | 2015

A Robust Bayesian Estimate of the Concordance Correlation Coefficient

Dai Feng; Richard Baumgartner; Vladimir Svetnik

A need for assessment of agreement arises in many situations including statistical biomarker qualification or assay or method validation. Concordance correlation coefficient (CCC) is one of the most popular scaled indices reported in evaluation of agreement. Robust methods for CCC estimation currently present an important statistical challenge. Here, we propose a novel Bayesian method of robust estimation of CCC based on multivariate Student’s t-distribution and compare it with its alternatives. Furthermore, we extend the method to practically relevant settings, enabling incorporation of confounding covariates and replications. The superiority of the new approach is demonstrated using simulation as well as real datasets from biomarker application in electroencephalography (EEG). This biomarker is relevant in neuroscience for development of treatments for insomnia.


PLOS ONE | 2014

Investigation of Cross-Species Translatability of Pharmacological MRI in Awake Nonhuman Primate - A Buprenorphine Challenge Study

Stephanie Seah; Abu Bakar Ali Asad; Richard Baumgartner; Dai Feng; Donald S. Williams; Elaine Manigbas; John D. Beaver; Torsten Reese; Brian Henry; Jeffrey L. Evelhoch; Chih-Liang Chin

Background Pharmacological MRI (phMRI) is a neuroimaging technique where drug-induced hemodynamic responses can represent a pharmacodynamic biomarker to delineate underlying biological consequences of drug actions. In most preclinical studies, animals are anesthetized during image acquisition to minimize movement. However, it has been demonstrated anesthesia could attenuate basal neuronal activity, which can confound interpretation of drug-induced brain activation patterns. Significant efforts have been made to establish awake imaging in rodents and nonhuman primates (NHP). Whilst various platforms have been developed for imaging awake NHP, comparison and validation of phMRI data as translational biomarkers across species remain to be explored. Methodology We have established an awake NHP imaging model that encompasses comprehensive acclimation procedures with a dedicated animal restrainer. Using a cerebral blood volume (CBV)-based phMRI approach, we have determined differential responses of brain activation elicited by the systemic administration of buprenorphine (0.03 mg/kg i.v.), a partial µ-opioid receptor agonist, in the same animal under awake and anesthetized conditions. Additionally, region-of-interest analyses were performed to determine regional drug-induced CBV time-course data and corresponding area-under-curve (AUC) values from brain areas with high density of µ-opioid receptors. Principal Findings In awake NHPs, group-level analyses revealed buprenorphine significantly activated brain regions including, thalamus, striatum, frontal and cingulate cortices (paired t-test, versus saline vehicle, p<0.05, n = 4). This observation is strikingly consistent with µ-opioid receptor distribution depicted by [6-O-[11C]methyl]buprenorphine ([11C]BPN) positron emission tomography imaging study in baboons. Furthermore, our findings are consistent with previous buprenorphine phMRI studies in humans and conscious rats which collectively demonstrate the cross-species translatability of awake imaging. Conversely, no significant change in activated brain regions was found in the same animals imaged under the anesthetized condition. Conclusions Our data highlight the utility and importance of awake NHP imaging as a translational imaging biomarker for drug research.

Collaboration


Dive into the Richard Baumgartner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Borsook

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lino Becerra

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Hargreaves

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge