Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Bouley is active.

Publication


Featured researches published by Richard Bouley.


Nature Chemical Biology | 2009

Sustained cyclic AMP production by parathyroid hormone receptor endocytosis.

Sebastien Ferrandon; Timothy N. Feinstein; Marián Castro; Bin Wang; Richard Bouley; John T. Potts; Thomas J. Gardella; Jean-Pierre Vilardaga

Cell signaling mediated by the G protein-coupled parathyroid hormone receptor type 1 (PTHR) is fundamental to bone and kidney physiology. It has been unclear how the two ligand systems--PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine--can effectively operate with only one receptor and trigger different durations of the cAMP responses. Here we analyze the ligand response by measuring the kinetics of activation and deactivation for each individual reaction step along the PTHR signaling cascade. We found that during the time frame of G protein coupling and cAMP production, PTHrP(1-36) action was restricted to the cell surface, whereas PTH(1-34) had moved to internalized compartments where it remained associated with the PTHR and Galpha(s), potentially as a persistent and active ternary complex. Such marked differences suggest a mechanism by which PTH and PTHrP induce differential responses, and these results indicate that the central tenet that cAMP production originates exclusively at the cell membrane must be revised.


Journal of Clinical Investigation | 2000

Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells

Richard Bouley; Sylvie Breton; Tian-Xiao Sun; Margaret McLaughlin; Ndona N. Nsumu; Herbert Y. Lin; Dennis A. Ausiello; Dennis Brown

In collecting duct principal cells, aquaporin 2 (AQP2) is shuttled from intracellular vesicles to the plasma membrane upon vasopressin (VP) stimulation. VP activates adenylyl cyclase, increases intracellular cAMP, activating protein kinase A (PKA) to phosphorylate AQP2 on the COOH-terminal residue, serine 256. Using rat kidney slices and LLC-PK1 cells stably expressing AQP2 (LLC-AQP2 cells), we now show that AQP2 trafficking can be stimulated by cAMP-independent pathways. In these systems, the nitric oxide (NO) donors sodium nitroprusside (SNP) and NONOate and the NO synthase substrate L-arginine mimicked the effect of VP, stimulating relocation of AQP2 from cytoplasmic vesicles to the plasma membrane. Unlike VP, these other agents did not increase intracellular cAMP. However, SNP increased intracellular cGMP, and exogenous cGMP stimulated AQP2-membrane insertion. Atrial natriuretic factor, which signals via cGMP, also stimulated AQP2 translocation. The VP and SNP effects were blocked by the kinase inhibitor H89. SNP did not stimulate membrane insertion of AQP2 in LLC-PK1 cells expressing the phosphorylation-deficient mutant 256SerAla-AQP2, indicating that phosphorylation of Ser256 is required for signaling. Both PKA and cGMP-dependent protein kinase G phosphorylated AQP2 on this COOH-terminal residue in vitro. These results demonstrate a novel, cAMP-independent and cGMP-dependent pathway for AQP2 membrane insertion in renal epithelial cells.


Journal of Biological Chemistry | 2007

Heat Shock Protein 70 Interacts with Aquaporin-2 and Regulates Its Trafficking

Hua A. Jenny Lu; Tian-Xiao Sun; Toshiyuki Matsuzaki; Xianhua Yi; Richard Bouley; Mary McKee; Dennis Brown

The trafficking of aquaporin-2 (AQP2) involves multiple complex pathways, including regulated, cAMP-, and cGMP-mediated pathways, as well as a constitutive recycling pathway. Although several accessory proteins have been indirectly implicated in AQP2 recycling, the direct protein-protein interactions that regulate this process remain largely unknown. Using yeast two-hybrid screening of a human kidney cDNA library, we have identified the 70-kDa heat shock proteins as AQP2-interacting proteins. Interaction was confirmed by mass spectrometry of proteins pulled down from rat kidney papilla extract using a GST-AQP2 C-terminal fusion protein (GST-A2C) as a bait, by co-immunoprecipitation (IP) assays, and by direct binding assays using purified hsc70 and the GST-A2C. The direct interaction of AQP2 with hsc70 is partially inhibited by ATP, and the Ser-256 residue in the AQP2 C terminus is important for this direct interaction. Vasopressin stimulation in cells enhances the interaction of hsc70 with AQP2 in IP assays, and vasopressin stimulation in vivo induces an increased co-localization of hsc70 and AQP2 on the apical membrane of principal cells in rat kidney collecting ducts. Functional knockdown of hsc70 activity in AQP2 expressing cells results in membrane accumulation of AQP2 and reduced endocytosis of rhodamine-transferrin. Our data also show that AQP2 interacts with hsp70 in multiple in vitro binding assays. Finally, in addition to hsc70 and hsp70, AQP2 interacts with several other key components of the endocytotic machinery in co-IP assays, including clathrin, dynamin, and AP2. To summarize, we have identified the 70-kDa heat shock proteins as a AQP2 interactors and have shown for hsc70 that this interaction is involved in AQP2 trafficking.


Journal of Biological Chemistry | 2013

Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin

Timothy N. Feinstein; Naofumi Yui; Matthew J. Webber; Vanessa L. Wehbi; Hilary P. Stevenson; J Darwin King; Kenneth R. Hallows; Dennis Brown; Richard Bouley; Jean-Pierre Vilardaga

Background: It remains unclear why vasopressin induces greater antidiuresis through V2R than does oxytocin. Results: Vasopressin sustains cAMP signaling during V2R internalization, a process promoted by β-arrestins, and is halted by the retromer complex. Conclusion: This new noncanonical model of GPCR signaling differentiates the actions of vasopressin and oxytocin. Significance: This emerging model may explain the physiological bias between ligands. The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na+ transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel “noncanonical” regulatory pathway for GPCR activation and response termination, via the sequential action of β-arrestin and the retromer complex.


American Journal of Physiology-renal Physiology | 2008

The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells

Hua A. Jenny Lu; Toshiyuki Matsuzaki; Richard Bouley; Udo Hasler; Quan-Hong Qin; Dennis Brown

Phosphorylation of serine 256 (S256) plays a critical role in vasopressin (VP)-mediated membrane accumulation of aquaporin-2 (AQP2). Recently, phosphorylation of serine 261 was also reported, raising the possibility that it has a role in AQP2 trafficking. We addressed this issue using transfected LLC-PK(1) cells that express point mutations of AQP2 S261 and S256, mimicking the phosphorylated (S to D) or dephosphorylated (S to A) states of these residues. Both AQP2 (S261A) and AQP2 (S261D) were located in the perinuclear cytoplasm without stimulation but, like wild-type AQP2, they both accumulated on the plasma membrane after 20-min exposure to VP or forskolin. Following membrane accumulation, S261A, S261D, and wild-type AQP2 reinternalization was complete over a similar time frame, between 30 and 60 min after VP washout. Using various combinations of point mutations, we showed that the phosphorylation state of S256 is dominant with respect to AQP2 behavior; AQP2 membrane accumulation and internalization were not detectably affected by the phosphorylation state of S261. Finally, blocking AQP2 endocytosis by methyl-beta-cyclodextrin caused membrane accumulation of AQP2 in cells expressing either a single S-A mutation or double mutations of S256 and S261, although as previously reported, the S256D mutation was always present at the cell surface. This suggests that constitutive recycling of AQP2 was not modified by the phosphorylation state of S261. Together, our data indicate that the phosphorylation state of AQP2 at S261 does not detectably affect regulated or constitutive trafficking of AQP2. The potential role of S261 phosphorylation/dephosphorylation in vasopressin action remains to be determined.


Nature Communications | 2013

Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress

Aditi U. Gurkar; Kiki Chu; Lakshmi Raj; Richard Bouley; Seung Hwan Lee; Young-Bum Kim; Sandra E. Dunn; Anna Mandinova; Sam W. Lee

The Ser/Thr Rho kinase 1 (ROCK1) is known to play major roles in a wide range of cellular activities, including those involved in tumor metastasis and apoptosis. Here we identify an indispensable function of ROCK1 in metabolic stress-induced autophagy. Applying a proteomics approach, we characterize Beclin1, a proximal component of the PI(3)kinase class III lipid-kinase complex that induces autophagy, as an interacting partner of ROCK1. Upon nutrient deprivation, activated ROCK1 promotes autophagy by binding and phosphorylating Beclin1 at Thr119. This results in the specific dissociation of the Beclin1-Bcl-2 complex, without affecting the Beclin1-UVRAG interaction. Conversely, inhibition of ROCK1 activity increases Beclin1-Bcl-2 association, thus reducing nutritional stress-mediated autophagy. Genetic knockout of ROCK1 function in mice also leads to impaired autophagy as evidenced by reduced autophagosome formation. These results show that ROCK1 acts as a prominent upstream regulator of Beclin1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy.


Current Opinion in Nephrology and Hypertension | 2008

Phosphorylation events and the modulation of aquaporin 2 cell surface expression.

Dennis Brown; Udo Hasler; Paula Nunes; Richard Bouley; Hua A. Jenny Lu

Purpose of reviewThis review highlights the role of phosphorylation in the trafficking and targeting of aquaporin 2. Current knowledge will be put into the context of modulating the cell surface expression of aquaporin 2 by vasopressin in renal epithelial cells, which is critical for regulation of urinary concentration and control of fluid and electrolyte homeostasis. Recent findingsIn addition to previously identified phosphorylation sites on aquaporin 2, new data have revealed three other serine residues in the C-terminus whose phosphorylation is altered by vasopressin. Several steps in aquaporin 2 recycling, including exocytosis and endocytosis, are coordinated by phosphorylation and dephosphorylation to regulate cell surface accumulation. Aquaporin 2 phosphorylation on serine 256 regulates aquaporin 2 association with proteins that are involved in trafficking, including hsc/hsp70 and myelin and lymphocyte-associated protein. SummaryAquaporin 2 trafficking is regulated by phosphorylation of serine 256 and other amino acid residues in its cytoplasmic domain. These events increase or decrease interaction of aquaporin 2 with key regulatory proteins to determine the cellular distribution and fate of aquaporin 2, both after vasopressin addition and under baseline conditions. Better understanding of these mechanisms may provide new therapeutic avenues for patients with X-linked nephrogenic diabetes insipidus, as well as providing basic cell biological information relevant to membrane trafficking processes in general.


American Journal of Physiology-cell Physiology | 2013

Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel

Naofumi Yui; Hua A. Jenny Lu; Ying Chen; Naohiro Nomura; Richard Bouley; Dennis Brown

The aquaporin-2 (AQP2) water channel relocates mainly to the apical plasma membrane of collecting duct principal cells after vasopressin (VP) stimulation. AQP2 transport to this membrane domain is assumed to be a direct route involving recycling of intracellular vesicles. However, basolateral plasma membrane expression of AQP2 is observed in vivo in principal cells. Here, we asked whether there is a transcytotic pathway of AQP2 trafficking between apical and basolateral membranes. We used MDCK cells in which AQP2 normally accumulates apically after VP exposure. In contrast, both site-specific biotinylation and immunofluorescence showed that AQP2 is strongly accumulated in the basolateral membrane, along with the endocytic protein clathrin, after a brief cold shock (4°C). This suggests that AQP2 may be constitutively targeted to basolateral membranes and then retrieved by clathrin-mediated endocytosis at physiological temperatures. Rab11 does not accumulate in basolateral membranes after cold shock, suggesting that the AQP2 in this location is not associated with Rab11-positive vesicles. After rewarming (37°C), basolateral AQP2 staining is diminished and it subsequently accumulates at the apical membrane in the presence of VP/forskolin, suggesting that transcytosis can be followed by apical insertion of AQP2. This process is inhibited by treatment with colchicine. Our data suggest that the cold shock procedure reveals the presence of microtubule-dependent AQP2 transcytosis, which represents an indirect pathway of apical AQP2 delivery in these cells. Furthermore, our data indicate that protein polarity data obtained from biotinylation assays, which require cells to be cooled to 4°C during the labeling procedure, should be interpreted with caution.


Seminars in Nephrology | 2008

Bypassing Vasopressin Receptor Signaling Pathways in Nephrogenic Diabetes Insipidus

Richard Bouley; Udo Hasler; Hua A. Jenny Lu; Paula Nunes; Dennis Brown

Water reabsorption in the kidney represents a critical physiological event in the maintenance of body water homeostasis. This highly regulated process relies largely on vasopressin (VP) action and on the VP-sensitive water channel (AQP2) that is expressed in principal cells of the kidney collecting duct. Defects in the VP signaling pathway and/or in AQP2 cell surface expression can lead to an inappropriate reduction in renal water reabsorption and the development of nephrogenic diabetes insipidus, a disease characterized by polyuria and polydipsia. This review focuses on the major regulatory steps that are involved in AQP2 trafficking and function. Specifically, we begin with a discussion on VP-receptor-independent mechanisms of AQP2 trafficking, with special emphasis on the nitric oxide-cyclic guanosine monophosphate signaling pathway, followed by a review of the mechanisms that govern AQP2 endocytosis and exocytosis. We then discuss emerging data illustrating roles played by the actin cytoskeleton on AQP2 trafficking, and lastly we consider elements that affect AQP2 protein expression in cells. Recent advances in each topic are summarized and are presented in the context of their potential to serve as a basis for the development of novel therapies that may ultimately improve life quality of nephrogenic diabetes insipidus patients.


Journal of Biological Chemistry | 2008

Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells.

Udo Hasler; Paula Nunes; Richard Bouley; Hua A. Jenny Lu; Toshiyuki Matsuzaki; Dennis Brown

The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser256-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.

Collaboration


Dive into the Richard Bouley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuel Escher

Université de Sherbrooke

View shared research outputs
Researchain Logo
Decentralizing Knowledge