Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Brackin is active.

Publication


Featured researches published by Richard Brackin.


PLOS ONE | 2011

Nitrate paradigm does not hold up for sugarcane.

Nicole Robinson; Richard Brackin; Kerry Vinall; Fiona M. Soper; Jirko Holst; Harshi K. Gamage; Chanyarat Paungfoo-Lonhienne; Heinz Rennenberg; Prakash Lakshmanan; Susanne Schmidt

Modern agriculture is based on the notion that nitrate is the main source of nitrogen (N) for crops, but nitrate is also the most mobile form of N and easily lost from soil. Efficient acquisition of nitrate by crops is therefore a prerequisite for avoiding off-site N pollution. Sugarcane is considered the most suitable tropical crop for biofuel production, but surprisingly high N fertilizer applications in main producer countries raise doubt about the sustainability of production and are at odds with a carbon-based crop. Examining reasons for the inefficient use of N fertilizer, we hypothesized that sugarcane resembles other giant tropical grasses which inhibit the production of nitrate in soil and differ from related grain crops with a confirmed ability to use nitrate. The results of our study support the hypothesis that N-replete sugarcane and ancestral species in the Andropogoneae supertribe strongly prefer ammonium over nitrate. Sugarcane differs from grain crops, sorghum and maize, which acquired both N sources equally well, while giant grass, Erianthus, displayed an intermediate ability to use nitrate. We conclude that discrimination against nitrate and a low capacity to store nitrate in shoots prevents commercial sugarcane varieties from taking advantage of the high nitrate concentrations in fertilized soils in the first three months of the growing season, leaving nitrate vulnerable to loss. Our study addresses a major caveat of sugarcane production and affords a strong basis for improvement through breeding cultivars with enhanced capacity to use nitrate as well as through agronomic measures that reduce nitrification in soil.


Journal of Experimental Botany | 2009

Nitrogen affects cluster root formation and expression of putative peptide transporters

Chanyarat Paungfoo-Lonhienne; Peer M. Schenk; Thierry G. A. Lonhienne; Richard Brackin; Stefan Meier; Doris Rentsch; Susanne Schmidt

Non-mycorrhizal Hakea actites (Proteaceae) grows in heathland where organic nitrogen (ON) dominates the soil nitrogen (N) pool. Hakea actites uses ON for growth, but the role of cluster roots in ON acquisition is unknown. The aim of the present study was to ascertain how N form and concentration affect cluster root formation and expression of peptide transporters. Hydroponically grown plants produced most biomass with low molecular weight ON>inorganic N>high molecular weight ON, while cluster roots were formed in the order no-N>ON>inorganic N. Intact dipeptide was transported into roots and metabolized, suggesting a role for the peptide transporter (PTR) for uptake and transport of peptides. HaPTR4, a member of subgroup II of the NRT1/PTR transporter family, which contains most characterized di- and tripeptide transporters in plants, facilitated transport of di- and tripeptides when expressed in yeast. No transport activity was demonstrated for HaPTR5 and HaPTR12, most similar to less well characterized transporters in subgroup III. The results provide further evidence that subgroup II of the NRT1/PTR family contains functional di- and tripeptide transporters. Green fluorescent protein fusion proteins of HaPTR4 and HaPTR12 localized to tonoplast, and plasma- and endomembranes, respectively, while HaPTR5 localized to vesicles of unknown identity. Grown in heathland or hydroponic culture with limiting N supply or starved of nutrients, HaPTR genes had the highest expression in cluster roots and non-cluster roots, and leaf expression increased upon re-supply of ON. It is concluded that formation of cluster roots and expression of PTR are regulated in response to N supply.


Functional Plant Biology | 2011

Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth

Fiona M. Soper; Chanyarat Paungfoo-Lonhienne; Richard Brackin; Doris Rentsch; Susanne Schmidt; Nicole Robinson

While importance of amino acids as a nitrogen source for plants is increasingly recognised, other organic N sources including small peptides have received less attention. We assessed the capacity of functionally different species, annual and nonmycorrhizal Arabidopsis thaliana (L.) Heynh. (Brassicaceae) and perennial Lobelia anceps L.f. (Campanulaceae), to acquire, metabolise and use small peptides as a N source independent of symbionts. Plants were grown axenically on media supplemented with small peptides (2-4 amino acids), amino acids or inorganic N. In A. thaliana, peptides of up to four amino acid residues sustained growth and supported up to 74% of the maximum biomass accumulation achieved with inorganic N. Peptides also supported growth of L. anceps, but to a lesser extent. Using metabolite analysis, a proportion of the peptides supplied in the medium were detected intact in root and shoot tissue together with their metabolic products. Nitrogen source preferences, growth responses and shoot-root biomass allocation were species-specific and suggest caution in the use of Arabidopsis as the sole plant model. In particular, glycine peptides of increasing length induced effects ranging from complete inhibition to marked stimulation of root growth. This study contributes to emerging evidence that plants can acquire and metabolise organic N beyond amino acids.


Scientific Reports | 2015

Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity

Richard Brackin; Torgny Näsholm; Nicole Robinson; Stéphane Guillou; Kerry Vinall; Prakash Lakshmanan; Susanne Schmidt; Erich Inselsbacher

Globally only ≈50% of applied nitrogen (N) fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. Synchronizing soil N supply and crop demand will address this problem, however current soil analysis methods provide little insight into delivery and acquisition of N forms by roots. We used microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure N fluxes in sugarcane cropping soils receiving different fertilizer regimes, and compare these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots’ uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that (i) the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and (ii) organic N may contribute more to crop N supply than is currently assumed.


Nature Communications | 2017

Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence

Yun Kit Yeoh; Paul G. Dennis; Chanyarat Paungfoo-Lonhienne; Lui C. Weber; Richard Brackin; Mark A. Ragan; Susanne Schmidt; Philip Hugenholtz

Culture-independent molecular surveys of plant root microbiomes indicate that soil type generally has a stronger influence on microbial communities than host phylogeny. However, these studies have mostly focussed on model plants and crops. Here, we examine the root microbiomes of multiple plant phyla including lycopods, ferns, gymnosperms, and angiosperms across a soil chronosequence using 16S rRNA gene amplicon profiling. We confirm that soil type is the primary determinant of root-associated bacterial community composition, but also observe a significant correlation with plant phylogeny. A total of 47 bacterial genera are associated with roots relative to bulk soil microbial communities, including well-recognized plant-associated genera such as Bradyrhizobium, Rhizobium, and Burkholderia, and major uncharacterized lineages such as WPS-2, Ellin329, and FW68. We suggest that these taxa collectively constitute an evolutionarily conserved core root microbiome at this site. This lends support to the inference that a core root microbiome has evolved with terrestrial plants over their 400 million year history.Yeoh et al. study root microbiomes of different plant phyla across a tropical soil chronosequence. They confirm that soil type is the primary determinant of root-associated bacterial communities, but also observe a clear correlation with plant phylogeny and define a core root microbiome at this site.


Functional Plant Biology | 2012

Amino acids are a nitrogen source for sugarcane

Kerry Vinall; Susanne Schmidt; Richard Brackin; Prakash Lakshmanan; Nicole Robinson

Organic forms of nitrogen (ON) represent potential N sources for crops and an alternative to inorganic N (IN, ammonium nitrate). Sugarcane soils receive organic harvest residues (~40-100kg ON ha-1), but it is unknown whether ON is a direct N source for crops. We investigated whether sugarcane can use organic monomers in the form of amino acids and whether the use of amino acids as a N source results in distinct metabolic or morphological change when compared with use of inorganic N (IN). Plantlets cultivated in sterile culture and young plants grown in non-sterile soil culture were supplied with IN, ON (five amino acids present in sugarcane soils), or combined IN and ON. All treatments resulted in similar biomass and N content indicating that sugarcane has a well developed capacity to use ON and confirms findings in other species. ON-supplied plants in axenic culture had increased total branch root length per unit primary root axis which has not been reported previously. In both experimental systems, ON supplied plants had increased asparagine concentrations suggesting altered N metabolism. Root of ON-supplied soil-grown plants had significantly reduced nitrate concentrations. We interpret the shift from nitrate to asparagine as indicative of N form use other than or in addition to nitrate by sugarcane. N metabolite profiling could advance knowledge of crop N sources and this will aid in development of N efficient cropping systems with a reduced N pollution footprint.


Plant Cell and Environment | 2017

Roots-eye view: Using microdialysis and microCT to non-destructively map root nutrient depletion and accumulation zones

Richard Brackin; Brian S. Atkinson; Craig J. Sturrock; Amanda Rasmussen

Improvement in fertilizer use efficiency is a key aspect for achieving sustainable agriculture in order to minimize costs, greenhouse gas emissions, and pollution from nutrient run-off. To optimize root architecture for nutrient uptake and efficiency, we need to understand what the roots encounter in their environment. Traditional methods of nutrient sampling, such as salt extractions can only be done at the end of an experiment, are impractical for sampling locations precisely and give total nutrient values that can overestimate the nutrients available to the roots. In contrast, microdialysis provides a non-invasive, continuous method for sampling available nutrients in the soil. Here, for the first time, we have used microCT imaging to position microdialysis probes at known distances from the roots and then measured the available nitrate and ammonium. We found that nitrate accumulated close to roots whereas ammonium was depleted demonstrating that this combination of complementary techniques provides a unique ability to measure root-available nutrients non-destructively and in almost real time.


Soil Research | 2014

Soil microbial responses to labile carbon input differ in adjacent sugarcane and forest soils

Richard Brackin; Nicole Robinson; Prakash Lakshmanan; Susanne Schmidt

Soil microbial activity can be constrained by availability of energy because soil carbon (C) occurs mostly as complex soil organic matter (SOM), with relatively small quantities of high-energy, labile C. Decomposition of SOM is mediated by energy-requiring processes that need extracellular enzymes produced by soil microbial communities. We examined how an increase in energy status via sucrose supplementation affects the production of SOM-degrading enzymes, comparing matched soils under forest and sugarcane agriculture with histories of contrasting inputs of complex and labile C. Activities of SOM-degrading enzymes increased in both soils after sucrose addition, but CO2 production increased more rapidly in the sugarcane soil. The forest soil had greater increases in phosphatase and glucosidase activities, whereas the sugarcane soil had greater increases in protease and urease activity. The contrasting microbial community-level physiological profiles of the soils further diverged at 30 and 61 days after sucrose amendment, before returning to near pre-treatment profiles by 150 days. We interpreted the increasing soil enzyme production as indicative that enzyme production was limited by energy availability in both soils, despite contrasting histories of labile v. recalcitrant C supply. Quicker responses in sugarcane soil suggest pre-selection towards populations that exploit labile inputs.


Science of The Total Environment | 2018

Sorbents can tailor nitrogen release from organic wastes to match the uptake capacity of crops

A. Chin; Susanne Schmidt; Scott Buckley; R. Pirie; M. Redding; Bronwyn Laycock; Paul Luckman; Damien J. Batstone; Nicole Robinson; Richard Brackin

Delivering nutrients from mineral or organic fertilizers out of synchrony with crop uptake causes inefficiencies and pollution. We explore methodologies for evaluating sorbents as additives to organic agricultural wastes to retain nitrogen in an exchangeable form and deliver at rates that approximate the uptake capacity of roots. Focussing on ammonium (NH4+) as the main inorganic nitrogen form in the studied wastes (sugarcane mill mud, poultry litter), we tested geo-sorbents and biochar for their ability to retain NH4+. Sorption capacity was ranked palagonite < bentonite, biochar, vermiculite < chabazite, clinoptilolite (5.7 to 24.3 mg NH4+ g-1 sorbent). Sorbent-waste formulations were analysed for sorption capacity, leaching and fluxes of NH4+. Ammonium-sorption capacity broadly translated to sorbent-waste formulations with clinoptilolite conferring the strongest NH4+ attenuation (80%), and palagonite the lowest (7%). A 1:1 ratio of sorbent:waste achieved stronger sorption than a 0.5:1 ratio, and similar sorption as a 1:1.5 ratio. In line with these results, clinoptilolite-amended wastes had the lowest in situ NH4+ fluxes, which exceeded the NH4+ uptake capacity (Imax) of sugarcane and sorghum roots 9 to 84-fold, respectively. Less efficient sorbent-waste formulations and un-amended wastes exceeded Imax of crop roots up to 274-fold. Roots preferentially colonized stronger sorbent-waste formulations and avoided weaker ones, suggesting that lower NH4+ fluxes generate a more favourable growth environment. This study contributes methodologies to identify suitable sorbents to formulate organic wastes as next-generation fertilizers with view of a crops nutrient physiology. Efficient re-purposing of wastes can improve nutrient use efficiency in agriculture and support the circular nutrient economy.


Agriculture, Ecosystems & Environment | 2012

Soluble inorganic and organic nitrogen in two Australian soils under sugarcane cultivation

Jirko Holst; Richard Brackin; Nicole Robinson; Prakash Lakshmanan; Susanne Schmidt

Collaboration


Dive into the Richard Brackin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerry Vinall

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Buckley

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jirko Holst

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Torgny Näsholm

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Alex Whan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge