Richard Caswell
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Caswell.
Nature Genetics | 2014
Sarah E. Flanagan; Emma Haapaniemi; Mark A. Russell; Richard Caswell; Hana Lango Allen; Elisa De Franco; Timothy J. McDonald; Hanna Rajala; Anita Ramelius; John Barton; Kaarina Heiskanen; Tarja Heiskanen-Kosma; Merja Kajosaari; Nuala Murphy; Tatjana Milenkovic; Mikko Seppänen; Åke Lernmark; Satu Mustjoki; Timo Otonkoski; Juha Kere; Noel G. Morgan; Sian Ellard; Andrew T. Hattersley
Monogenic causes of autoimmunity provide key insights into the complex regulation of the immune system. We report a new monogenic cause of autoimmunity resulting from de novo germline activating STAT3 mutations in five individuals with a spectrum of early-onset autoimmune disease, including type 1 diabetes. These findings emphasize the critical role of STAT3 in autoimmune disease and contrast with the germline inactivating STAT3 mutations that result in hyper IgE syndrome.
American Journal of Human Genetics | 2011
Michael N. Weedon; Robert Hastings; Richard Caswell; Weijia Xie; Konrad Paszkiewicz; Thalia Antoniadi; Maggie Williams; Cath King; Lynn Greenhalgh; Ruth Newbury-Ecob; Sian Ellard
Charcot-Marie-Tooth disease is characterized by length-dependent axonal degeneration with distal sensory loss and weakness, deep-tendon-reflex abnormalities, and skeletal deformities. It is caused by mutations in more than 40 genes. We investigated a four-generation family with 23 members affected by the axonal form (type 2), for which the common causes had been excluded by Sanger sequencing. Exome sequencing of three affected individuals separated by eight meioses identified a single shared novel heterozygous variant, c.917A>G, in DYNC1H1, which encodes the cytoplasmic dynein heavy chain 1 (here, novel refers to a variant that has not been seen in dbSNP131or the August 2010 release of the 1000 Genomes project). Testing of six additional affected family members showed cosegregation and a maximum LOD score of 3.6. The shared DYNC1H1 gene variant is a missense substitution, p.His306Arg, at a highly conserved residue within the homodimerization domain. Three mouse models with different mutations within this domain have previously been reported with age-related progressive loss of muscle bulk and locomotor ability. Cytoplasmic dynein is a large multisubunit motor protein complex and has a key role in retrograde axonal transport in neurons. Our results highlight the importance of dynein and retrograde axonal transport in neuronal function in humans.
The EMBO Journal | 1994
Christian Hagemeier; Richard Caswell; G P Hayhurst; John Sinclair; Tony Kouzarides
The 86 kDa immediate early IE2 protein of human cytomegalovirus (HCMV) can activate transcription of both viral and cellular genes and can repress transcription from its own promoter. Using two in vivo assays, we provide evidence of a functional interaction between IE2 and the retinoblastoma (RB) protein: IE2 alleviates RB‐induced repression of a promoter bearing E2F binding sites and RB alleviates IE2‐mediated repression of its own promoter. These functional effects are likely to be a result of a direct contact between IE2 and RB, which we can demonstrate both in vitro and in HCMV‐infected cells. The interaction between IE2 and RB shows similar characteristics to the interaction between RB and E1A. First, binding to IE2 requires an intact RB pocket domain. Secondly, the binding is sensitive to the phosphorylation state of RB, because cyclin A‐CDK‐induced phosphorylation of RB diminishes IE2 binding. Thirdly, the IE2 domain required for RB binding is separate to the domains necessary for TBP and TFIIB binding. Our results demonstrate that large and small DNA viruses have a common interface with the host cell, namely the association with the RB tumour suppressor protein.
Nature Genetics | 2012
Hana Lango Allen; Sarah E. Flanagan; Charles Shaw-Smith; Elisa De Franco; Ildem Akerman; Richard Caswell; Jorge Ferrer; Andrew T. Hattersley; Sian Ellard
Understanding the regulation of pancreatic development is key for efforts to develop new regenerative therapeutic approaches for diabetes. Rare mutations in PDX1 and PTF1A can cause pancreatic agenesis, however, most instances of this disorder are of unknown origin. We report de novo heterozygous inactivating mutations in GATA6 in 15/27 (56%) individuals with pancreatic agenesis. These findings define the most common cause of human pancreatic agenesis and establish a key role for the transcription factor GATA6 in human pancreatic development.
Diabetologia | 2013
Sian Ellard; H. Lango Allen; E De Franco; Sarah E. Flanagan; Gerald Hysenaj; Kevin Colclough; Jayne Houghton; Maggie Shepherd; Andrew T. Hattersley; Michael N. Weedon; Richard Caswell
Aims/hypothesisCurrent genetic tests for diagnosing monogenic diabetes rely on selection of the appropriate gene for analysis according to the patient’s phenotype. Next-generation sequencing enables the simultaneous analysis of multiple genes in a single test. Our aim was to develop a targeted next-generation sequencing assay to detect mutations in all known MODY and neonatal diabetes genes.MethodsWe selected 29 genes in which mutations have been reported to cause neonatal diabetes, MODY, maternally inherited diabetes and deafness (MIDD) or familial partial lipodystrophy (FPLD). An exon-capture assay was designed to include coding regions and splice sites. A total of 114 patient samples were tested—32 with known mutations and 82 previously tested for MODY (n = 33) or neonatal diabetes (n = 49) but in whom a mutation had not been found. Sequence data were analysed for the presence of base substitutions, small insertions or deletions (indels) and exonic deletions or duplications.ResultsIn the 32 positive controls we detected all previously identified variants (34 mutations and 36 polymorphisms), including 55 base substitutions, ten small insertions or deletions and five partial/whole gene deletions/duplications. Previously unidentified mutations were found in five patients with MODY (15%) and nine with neonatal diabetes (18%). Most of these patients (12/14) had mutations in genes that had not previously been tested.Conclusions/interpretationOur novel targeted next-generation sequencing assay provides a highly sensitive method for simultaneous analysis of all monogenic diabetes genes. This single test can detect mutations previously identified by Sanger sequencing or multiplex ligation-dependent probe amplification dosage analysis. The increased number of genes tested led to a higher mutation detection rate.
Nature Genetics | 2014
Michael N. Weedon; Inês Cebola; Ann-Marie Patch; Sarah E. Flanagan; Elisa De Franco; Richard Caswell; Santiago A. Rodríguez-Seguí; Charles Shaw-Smith; Candy H.-H. Cho; Hana Lango Allen; Jayne Houghton; Christian L. Roth; Rongrong Chen; Khalid Hussain; Phil Marsh; Ludovic Vallier; Anna Murray; Sian Ellard; Jorge Ferrer; Andrew T. Hattersley
The contribution of cis-regulatory mutations to human disease remains poorly understood. Whole-genome sequencing can identify all noncoding variants, yet the discrimination of causal regulatory mutations represents a formidable challenge. We used epigenomic annotation in human embryonic stem cell (hESC)-derived pancreatic progenitor cells to guide the interpretation of whole-genome sequences from individuals with isolated pancreatic agenesis. This analysis uncovered six different recessive mutations in a previously uncharacterized ∼400-bp sequence located 25 kb downstream of PTF1A (encoding pancreas-specific transcription factor 1a) in ten families with pancreatic agenesis. We show that this region acts as a developmental enhancer of PTF1A and that the mutations abolish enhancer activity. These mutations are the most common cause of isolated pancreatic agenesis. Integrating genome sequencing and epigenomic annotation in a disease-relevant cell type can thus uncover new noncoding elements underlying human development and disease.
Journal of General Virology | 1993
Richard Caswell; Christian Hagemeier; Chuang-Jiun Chiou; Gary Hayward; Tony Kouzarides; John Sinclair
The 86K immediate early (IE) 2 protein of human cytomegalovirus trans-activates a number of homologous and heterologous promoters, including the cellular promoter for the 70K heat-shock protein (hsp70), and the human immunodeficiency virus long terminal repeat. We have previously shown that IE2 trans-activates these two promoters in a TATA-dependent manner, and that IE2 is able to form a direct contact with TATA-box binding protein (TBP) in vitro. We now show that IE2 binds to the basic repeat region of TBP. In addition IE2 can contact a second general transcription factor, TFIIB. We have mapped the TBP- and TFIIB-binding regions within IE2 and show that these regions overlap, and also lie within parts of the protein previously identified as being required for the trans-activation and autoregulation functions of IE2.
Diabetes Care | 2009
Oscar Rubio-Cabezas; Jayne Minton; Richard Caswell; Julian Shield; Dorothee Deiss; Zdenek Sumnik; Amely Cayssials; Mathias Herr; Anja Loew; Vaughan Lewis; Sian Ellard; Andrew T. Hattersley
OBJECTIVE—Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by FOXP3 mutations. We aimed to determine the prevalence, genetics, and clinical phenotype of FOXP3 mutations in a large cohort with permanent neonatal diabetes (PNDM). RESEARCH DESIGN AND METHODS—The 11 coding exons and the polyadenylation region of FOXP3 were sequenced in 26 male subjects with diabetes diagnosed before 6 months of age in whom common genetic causes of PNDM had been excluded. Ten subjects had at least one additional immune-related disorder, and the remaining 16 had isolated diabetes. RESULTS—We identified four hemizygous FOXP3 mutations in 6 of 10 patients with associated immune-related disorders and in 0 of 16 patients with isolated diabetes (P = 0.002). Three patients with two novel mutations (R337Q and P339A) and the previously reported L76QfsX53 developed classic IPEX syndrome and died within the first 13 months. The novel mutation V408M was found in three patients from two unrelated families and had a mild phenotype with hypothyroidism and autoimmune enteropathy (n = 2) or nephrotic syndrome (n = 1) and survival to 12–15 years. CONCLUSIONS—FOXP3 mutations result in ∼4% of cases of male patients with permanent diabetes diagnosed before 6 months. Patients not only have classic IPEX syndrome but, unexpectedly, may have a more benign phenotype. FOXP3 sequencing should be performed in any male patient with the diagnosis of diabetes in the first 6 months who develops other possible autoimmune-associated conditions, even in the absence of full IPEX syndrome.
Nature Genetics | 2013
Michael N. Weedon; Sian Ellard; Marc J. Prindle; Richard Caswell; Hana Lango Allen; Richard A. Oram; Koumudi Godbole; Chittaranjan S. Yajnik; Paolo Sbraccia; Giuseppe Novelli; Peter D. Turnpenny; Emma McCann; Kim Jee Goh; Yukai Wang; Jonathan Fulford; Laura J. McCulloch; David B. Savage; Stephen O'Rahilly; Katarina Kos; Lawrence A. Loeb; Robert K. Semple; Andrew T. Hattersley
DNA polymerase δ, whose catalytic subunit is encoded by POLD1, is responsible for lagging-strand DNA synthesis during DNA replication. It carries out this synthesis with high fidelity owing to its intrinsic 3′- to 5′-exonuclease activity, which confers proofreading ability. Missense mutations affecting the exonuclease domain of POLD1 have recently been shown to predispose to colorectal and endometrial cancers. Here we report a recurring heterozygous single-codon deletion in POLD1 affecting the polymerase active site that abolishes DNA polymerase activity but only mildly impairs 3′- to 5′-exonuclease activity. This mutation causes a distinct multisystem disorder that includes subcutaneous lipodystrophy, deafness, mandibular hypoplasia and hypogonadism in males. This discovery suggests that perturbing the function of the ubiquitously expressed POLD1 polymerase has unexpectedly tissue-specific effects in humans and argues for an important role for POLD1 function in adipose tissue homeostasis.
Journal of General Virology | 2000
John Sinclair; Joan Baillie; Linda A. Bryant; Richard Caswell
Terminal differentiation of embryonal carcinoma cells and monocytes has been shown to be important for their permissiveness for human cytomegalovirus (HCMV) infection, even though such terminally differentiated cells have withdrawn from the cell cycle and are, essentially, in G(0) arrest. Recently, data from a number of laboratories have shown that productive infection with HCMV of quiescent fibroblasts held reversibly in G(0) of the cell cycle can result in cell cycle progression, which results eventually in cycle arrest. In contrast to quiescent fibroblasts, the effect of HCMV on cells that have withdrawn irreversibly from the cell cycle due to terminal differentiation has not, so far, been addressed. Here, it is shown that, in cells that have arrested in G(0) as a result of terminal differentiation, HCMV is able to induce cell functions associated with progression of the cell cycle through G(1) into early S phase. This progression is correlated with a direct physical and functional interaction between the HCMV 86 kDa major immediate-early protein (IE86) and the cyclin-dependent kinase inhibitor p21(Cip1).