Richard Childs
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Childs.
Nature Medicine | 2007
Toshihiko Tanno; Natarajan V. Bhanu; Patricia A. Oneal; Sung-Ho Goh; Pamela Staker; Y. Terry Lee; John W. Moroney; Christopher Reed; Naomi L.C. Luban; Rui-Hong Wang; Thomas E. Eling; Richard Childs; Tomas Ganz; Susan F. Leitman; Suthat Fucharoen; Jeffery L. Miller
In thalassemia, deficient globin-chain production during erythropoiesis results in anemia. Thalassemia may be further complicated by iron overload (frequently exacerbated by blood transfusion), which induces numerous endocrine diseases, hepatic cirrhosis, cardiac failure and even death. Accumulation of iron in the absence of blood transfusions may result from inappropriate suppression of the iron-regulating peptide hepcidin by an erythropoietic mechanism. To test this hypothesis, we examined erythroblast transcriptome profiles from 15 healthy, nonthalassemic donors. Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-β superfamily, showed increased expression and secretion during erythroblast maturation. Healthy volunteers had mean GDF15 serum concentrations of 450 ± 50 pg/ml. In comparison, individuals with β-thalassemia syndromes had elevated GDF15 serum levels (mean 66,000 ± 9,600 pg/ml; range 4,800–248,000 pg/ml; P < 0.05) that were positively correlated with the levels of soluble transferrin receptor, erythropoietin and ferritin. Serum from thalassemia patients suppressed hepcidin mRNA expression in primary human hepatocytes, and depletion of GDF15 reversed hepcidin suppression. These results suggest that GDF15 overexpression arising from an expanded erythroid compartment contributes to iron overload in thalassemia syndromes by inhibiting hepcidin expression.
Cell Stem Cell | 2009
Kairong Cui; Chongzhi Zang; Tae-Young Roh; Dustin E. Schones; Richard Childs; Weiqun Peng; Keji Zhao
Histone modifications have been implicated in stem cell maintenance and differentiation. We have analyzed genome-wide changes in gene expression and histone modifications during differentiation of multipotent human primary hematopoietic stem cells/progenitor cells (HSCs/HPCs) into erythrocyte precursors. Our data indicate that H3K4me1, H3K9me1, and H3K27me1 associate with enhancers of differentiation genes prior to their activation and correlate with basal expression, suggesting that these monomethylations are involved in the maintenance of activation potential required for differentiation. In addition, although the majority of genes associated with both H3K4me3 and H3K27me3 in HSCs/HPCs become silent and lose H3K4me3 after differentiation, those that lose H3K27me3 and become activated after differentiation are associated with increased levels of H2A.Z, H3K4me1, H3K9me1, H4K20me1, and RNA polymerase II in HSCs/HPCs. Thus, our data suggest that gene expression changes during differentiation are programmed by chromatin modifications present at the HSC/HPC stage and provide a resource for enhancer and promoter identification.
The New England Journal of Medicine | 2009
Matthew M. Hsieh; Elizabeth M. Kang; Courtney D. Fitzhugh; M. Beth Link; Charles D. Bolan; Roger Kurlander; Richard Childs; Griffin P. Rodgers; Jonathan D. Powell; John F. Tisdale
BACKGROUND Myeloablative allogeneic hematopoietic stem-cell transplantation is curative in children with sickle cell disease, but in adults the procedure is unduly toxic. Graft rejection and graft-versus-host disease (GVHD) are additional barriers to its success. We performed nonmyeloablative stem-cell transplantation in adults with sickle cell disease. METHODS Ten adults (age range, 16 to 45 years) with severe sickle cell disease underwent nonmyeloablative transplantation with CD34+ peripheral-blood stem cells, mobilized by granulocyte colony-stimulating factor (G-CSF), which were obtained from HLA-matched siblings. The patients received 300 cGy of total-body irradiation plus alemtuzumab before transplantation, and sirolimus was administered afterward. RESULTS All 10 patients were alive at a median follow-up of 30 months after transplantation (range, 15 to 54). Nine patients had long-term, stable donor lymphohematopoietic engraftment at levels that sufficed to reverse the sickle cell disease phenotype. Mean (+/-SE) donor-recipient chimerism for T cells (CD3+) and myeloid cells (CD14+15+) was 53.3+/-8.6% and 83.3+/-10.3%, respectively, in the nine patients whose grafts were successful. Hemoglobin values before transplantation and at the last follow-up assessment were 9.0+/-0.3 and 12.6+/-0.5 g per deciliter, respectively. Serious adverse events included the narcotic-withdrawal syndrome and sirolimus-associated pneumonitis and arthralgia. Neither acute nor chronic GVHD developed in any patient. CONCLUSIONS A protocol for nonmyeloablative allogeneic hematopoietic stem-cell transplantation that includes total-body irradiation and treatment with alemtuzumab and sirolimus can achieve stable, mixed donor-recipient chimerism and reverse the sickle cell phenotype. (ClinicalTrials.gov number, NCT00061568.)
Lancet Oncology | 2015
Mohammed Farooqui; Janet Valdez; Sabrina Martyr; Georg Aue; Nakhle S. Saba; Carsten U. Niemann; Sarah E. M. Herman; Xin Tian; Gerald E. Marti; Susan Soto; Thomas Hughes; Jade Jones; Andrew Lipsky; Stefania Pittaluga; Maryalice Stetler-Stevenson; Constance Yuan; Yuh Shan Lee; Lone Bredo Pedersen; Christian H Geisler; Katherine R. Calvo; Diane C. Arthur; Irina Maric; Richard Childs; Neal S. Young; Adrian Wiestner
BACKGROUND Patients with chronic lymphocytic leukaemia (CLL) with TP53 aberrations respond poorly to first-line chemoimmunotherapy, resulting in early relapse and short survival. We investigated the safety and activity of ibrutinib in previously untreated and relapsed or refractory CLL with TP53 aberrations. METHODS In this investigator-initiated, single-arm phase 2 study, we enrolled eligible adult patients with active CLL with TP53 aberrations at the National Institutes of Health Clinical Center (Bethesda, MD, USA). Patients received 28-day cycles of ibrutinib 420 mg orally once daily until disease progression or the occurrence of limiting toxicities. The primary endpoint was overall response to treatment at 24 weeks in all evaluable patients. This study is registered with ClinicalTrials.gov, number NCT01500733, and is fully enrolled. FINDINGS Between Dec 22, 2011, and Jan 2, 2014, we enrolled 51 patients; 47 had CLL with deletion 17p13.1 and four carried a TP53 mutation in the absence of deletion 17p13.1. All patients had active disease requiring therapy. 35 enrolled patients had previously untreated CLL and 16 had relapsed or refractory disease. Median follow-up was 24 months (IQR 12.9-27.0). 33 previously untreated patients and 15 patients with relapsed or refractory CLL were evaluable for response at 24 weeks. 32 (97%; 95% CI 86-100) of 33 previously untreated patients achieved an objective response, including partial response in 18 patients (55%) and partial response with lymphocytosis in 14 (42%). One patient had progressive disease at 0.4 months. 12 (80%; 95% CI 52-96) of the 15 patients with relapsed or refractory CLL had an objective response: six (40%) achieved a partial response and six (40%) a partial response with lymphocytosis; the remaining three (20%) patients had stable disease. Grade 3 or worse treatment-related adverse events were neutropenia in 12 (24%) patients (grade 4 in one [2%] patient), anaemia in seven (14%) patients, and thrombocytopenia in five (10%) patients (grade 4 in one [2%] patient). Grade 3 pneumonia occurred in three (6%) patients, and grade 3 rash in one (2%) patient. INTERPRETATION The activity and safety profile of single-agent ibrutinib in CLL with TP53 aberrations is encouraging and supports its consideration as a novel treatment option for patients with this high-risk disease in both first-line and second-line settings. FUNDING Intramural Research Program of the National Heart, Lung, and Blood Institute and the National Cancer Institute, Danish Cancer Society, Novo Nordisk Foundation, National Institutes of Health Medical Research Scholars Program, and Pharmacyclics Inc.
Journal of Clinical Oncology | 1999
Richard Childs; Emmanuel Clave; John F. Tisdale; Michelle Plante; Nancy Hensel; John Barrett
PURPOSE A 50-year-old man developed progressive pulmonary metastasis resistant to interferon alfa-2b treatment 7 months after he underwent left nephrectomy for stage III renal cell carcinoma. We performed a nonmyeloablative allogeneic peripheral-blood stem-cell transplant in this patient to exploit a possible graft-versus-tumor effect from allogeneic lymphocytes. MATERIALS AND METHODS The conditioning regimen consisted of fludarabine and cyclophosphamide followed by a T-cell replete, granulocyte-colony stimulating-factor-mobilized peripheral-blood stem-cell transplant from his HLA-identical brother. Cyclosporine was administered from days -4 to +45 to prevent graft rejection and acute graft-versus-host disease (GVHD). RESULTS Serial polymerase chain reaction analysis of hematopoietic lineage-specific minisatellites initiallyshowed mixed chimerism in CD14(+) and CD15(+) myeloid cells, CD3(+) T cells, and CD34(+) progenitor cells, with rapid conversion to 100% donor T-cell chimerism by day +60 and 100% donor myeloid cells by day +100. Serial computed tomography scans of the chest showed stable disease at day +30, slight regression of pulmonary lesions at day +63, and complete disappearance of all pulmonary metastatic disease by day +110. Mild transient acute GVHD disease of the skin occurred on day +60 and limited chronic GVHD of the skin occurred by day +200. CONCLUSION The complete regression of metastatic disease, which has now been maintained for more than 1 year, is compatible with a graft-versus-tumor effect.
Cytotherapy | 2009
Maria Berg; Andreas Lundqvist; Philip McCoy; Leigh Samsel; Yong Fan; Abdul Tawab; Richard Childs
BACKGROUND AIMS Cancer immunotherapy involving natural killer (NK) cell infusions and administration of therapeutic agents modulating the susceptibility of tumors to NK-cell lysis has been proposed recently. We provide a method for expanding highly cytotoxic clinical-grade NK cells in vitro for adoptive transfer following bortezomib treatment in patients with advanced malignancies. METHODS NK cells were expanded with irradiated Epstein-Barr virus-transformed lymphoblastoid cells. Expanded cells were evaluated for their phenotype, cytotoxicity, cytokine secretion, dependence on interleukin (IL)-2 and ability to retain function after cryopreservation. RESULTS A pure population of clinical-grade NK cells expanded 490+/-260-fold over 21 days. Expanded NK cells had increased TRAIL, FasL and NKG2D expression and significantly higher cytotoxicity against bortezomib-treated tumors compared with resting NK cells. Expanded NK cells, co-cultured with K562 and renal cell carcinoma tumor targets, secreted significantly higher levels of soluble Fas ligand 6; fgjhd IFN-gamma, GM-CSF, TNF-alpha, MIP-1alpha and MIP-1beta compared with resting NK cells. Secretion of the above cytokines and NK-cell cytolytic function were IL-2 dose dependent. Cryopreservation of expanded NK cells reduced expression of NKG2D and TRAIL and NK-cell cytotoxicity, although this effect could be reversed by exposure of NK cells to IL-2. CONCLUSIONS We describe a method for large-scale expansion of NK cells with increased expression of activating receptors and death receptor ligands resulting in superior cytotoxicity against tumor cells. This ex vivo NK-cell expansion technique is currently being utilized in a clinical trial evaluating the anti-tumor activity of adoptively infused NK cells in combination with bortezomib.
Cancer Research | 2006
Andreas Lundqvist; Scott I. Abrams; David S. Schrump; Gauri Alvarez; Dante Suffredini; Maria Berg; Richard Childs
The proteasome inhibitor, bortezomib, and the histone deacetylase inhibitor, depsipeptide (FK228), up-regulate tumor death receptors. Therefore, we investigated whether pretreatment of malignant cells with these agents would potentiate natural killer (NK)-mediated tumor killing. NK cells isolated from healthy donors and patients with cancer were expanded in vitro and then tested for cytotoxicity against tumor cell lines before and after exposure to bortezomib or depsipeptide. In 11 of 13 (85%) renal cell carcinoma cell lines and in 16 of 37 (43%) other cancer cell lines, exposure to these drugs significantly increased NK cell-mediated tumor lysis compared with untreated tumor controls (P < 0.001). Furthermore, NK cells expanded from patients with metastatic renal cell carcinoma were significantly more cytotoxic against autologous tumor cells when pretreated with either bortezomib or depsipeptide compared with untreated tumors. Tumors sensitized to NK cell cytotoxicity showed a significant increase in surface expression of DR5 [tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-R2; P < 0.05]; in contrast, surface expression of MHC class I, MIC-A/B, DR4 (TRAIL-R1), and Fas (CD95) did not change. The enhanced susceptibility to NK cell killing was completely abolished by blocking TRAIL on NK cells, and partially abolished by blocking DR5 on tumor cells. These findings show that drug-induced sensitization to TRAIL could be used as a novel strategy to potentiate the anticancer effects of adoptively infused NK cells in patients with cancer.
Leukemia | 2007
Bipin N. Savani; Stephan Mielke; Sharon Adams; Marcela R. Uribe; Katayoun Rezvani; Agnes S. M. Yong; Josette Zeilah; Roger Kurlander; Ramaprasad Srinivasan; Richard Childs; Nancy Hensel; A.J. Barrett
Natural killer (NK) cells are the first lymphocytes to recover after allogeneic stem cell transplantation (SCT) and can exert powerful graft-versus-leukemia (GVL) effects determining transplant outcome. Conditions governing NK cell alloreactivity and the role of NK recovery in sibling SCT are not well defined. NK cells on day 30 post-transplant (NK30) were measured in 54 SCT recipients with leukemia and donor and recipient killer immunoglobulin-like receptor (KIR) genotype determined. In univariate analysis, donor KIR genes 2DL5A, 2DS1, 3DS1 (positive in 46%) and higher numbers of inhibitory donor KIR correlated with higher NK30 counts and were associated with improved transplant outcome. NK30 counts also correlated directly with the transplant CD34 cell dose and inversely with the CD3+ cell dose. In multivariate analysis, the NK30 emerged as the single independent determinant of transplant outcome. Patients with NK30 >150/μl had less relapse (HR 18.3, P=0.039), acute graft-versus-host disease (HR 3.2, P=0.03), non-relapse mortality (HR 10.7, P=0.028) and improved survival (HR 11.4, P=0.03). Results suggest that T cell-depleted SCT might be improved and the GVL effect enhanced by selecting donors with favorable KIR genotype, and by optimizing CD34 and CD3 doses.
American Journal of Physiology-renal Physiology | 2008
Hideo Yasuda; Asada Leelahavanichkul; Shinichiro Tsunoda; James W. Dear; Yoshiyuki Takahashi; Shuichi Ito; Xuzhen Hu; Hua Zhou; Kent Doi; Richard Childs; Dennis M. Klinman; Peter S.T. Yuen; Robert A. Star
Mortality from sepsis has remained high despite recent advances in supportive and targeted therapies. Toll-like receptors (TLRs) sense bacterial products and stimulate pathogenic innate immune responses. Mice deficient in the common adapter protein MyD88, downstream from most TLRs, have reduced mortality and acute kidney injury (AKI) from polymicrobial sepsis. However, the identity of the TLR(s) responsible for the host response to polymicrobial sepsis is unknown. Here, we show that chloroquine, an inhibitor of endocytic TLRs (TLR3, 7, 8, 9), improves sepsis-induced mortality and AKI in a clinically relevant polymicrobial sepsis mouse model, even when administered 6 h after the septic insult. Chloroquine administration attenuated the decline in renal function, splenic apoptosis, serum markers of damage to other organs, and prototypical serum pro- and anti-inflammatory cytokines TNF-alpha and IL-10. An oligodeoxynucleotide inhibitor (H154) of TLR9 and TLR9-deficient mice mirror the actions of chloroquine in all functional parameters that we tested. In addition, chloroquine decreased TLR9 protein abundance in spleen, further suggesting that TLR9 signaling may be a major target for the protective actions of chloroquine. Our findings indicate that chloroquine improves survival by inhibiting multiple pathways leading to polymicrobial sepsis and that chloroquine and TLR9 inhibitors represent viable broad-spectrum and targeted therapeutic strategies, respectively, that are promising candidates for further clinical development.
Journal of Clinical Investigation | 2008
Yoshiyuki Takahashi; Nanae Harashima; Sachiko Kajigaya; Hisayuki Yokoyama; Elena Cherkasova; J. Philip McCoy; Ken-ichi Hanada; Othon Mena; Roger Kurlander; Tawab Abdul; Ramaprasad Srinivasan; Andreas Lundqvist; Elizabeth B. Malinzak; Nancy L. Geller; Michael I. Lerman; Richard Childs
Transplanted donor lymphocytes infused during hematopoietic stem cell transplantation (HSCT) have been shown to cure patients with hematological malignancies. However, less is known about the effects of HSCT on metastatic solid tumors. Thus, a better understanding of the immune cells and their target antigens that mediate tumor regression is urgently needed to develop more effective HSCT approaches for solid tumors. Here we report regression of metastatic renal cell carcinoma (RCC) in patients following nonmyeloablative HSCT consistent with a graft-versus-tumor effect. We detected RCC-reactive donor-derived CD8(+) T cells in the blood of patients following nonmyeloablative HSCT. Using cDNA expression cloning, we identified a 10-mer peptide (CT-RCC-1) as a target antigen of RCC-specific CD8(+) T cells. The genes encoding this antigen were found to be derived from human endogenous retrovirus (HERV) type E and were expressed in RCC cell lines and fresh RCC tissue but not in normal kidney or other tissues. We believe this to be the first solid tumor antigen identified using allogeneic T cells from a patient undergoing HSCT. These data suggest that HERV-E is activated in RCC and that it encodes an overexpressed immunogenic antigen, therefore providing a potential target for cellular immunity.