Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard D. Beger is active.

Publication


Featured researches published by Richard D. Beger.


Metabolomics | 2007

Proposed minimum reporting standards for chemical analysis

Lloyd W. Sumner; Alexander Amberg; Dave Barrett; Michael H. Beale; Richard D. Beger; Clare A. Daykin; Teresa W.-M. Fan; Oliver Fiehn; Royston Goodacre; Julian L. Griffin; Thomas Hankemeier; Nigel Hardy; James M. Harnly; Richard M. Higashi; Joachim Kopka; Andrew N. Lane; John C. Lindon; Philip J. Marriott; Andrew W. Nicholls; Michael D. Reily; John J. Thaden; Mark R. Viant

There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://[email protected]. Further, community input related to this document can also be provided via this electronic forum.


Circulation Research | 2007

Deletion of LOX-1 Reduces Atherogenesis in LDLR Knockout Mice Fed High Cholesterol Diet

Jawahar L. Mehta; Nobuhito Sanada; Chang Ping Hu; Jiawei Chen; Abhijit Dandapat; Fumiaki Sugawara; Hiroo Satoh; Kazuhiko Inoue; Yosuke Kawase; Kou Ichi Jishage; Hiroshi Suzuki; Motohiro Takeya; Laura K. Schnackenberg; Richard D. Beger; Paul L. Hermonat; Maria Thomas; Tatsuya Sawamura

Atherosclerosis is associated with oxidative stress and inflammation, and upregulation of LOX-1, an endothelial receptor for oxidized LDL (oxLDL). Here, we describe generation of LOX-1 knockout (KO) mice in which binding of oxLDL to aortic endothelium was reduced and endothelium-dependent vasorelaxation preserved after treatment with oxLDL (P<0.01 versus wild-type mice). To address whether endothelial functional preservation might lead to reduction in atherogenesis, we crossed LOX-1 KO mice with LDLR KO mice and fed these mice 4% cholesterol/10% cocoa butter diet for 18 weeks. Atherosclerosis was found to cover 61±2% of aorta in the LDLR KO mice, but only 36±3% of aorta in the double KO mice. Luminal obstruction and intima thickness were significantly reduced in the double KO mice (versus LDLR KO mice). Expression of redox-sensitive NF-&kgr;B and the inflammatory marker CD68 in LDLR KO mice was increased (P<0.01 versus wild-type mice), but not in the double KO mice. On the other hand, antiinflammatory cytokine IL-10 expression and superoxide dismutase activity were low in the LDLR KO mice (P<0.01 versus wild-type mice), but not in the double KO mice. Endothelial nitric oxide synthase expression was also preserved in the double KO mice. The proinflammatory signal MAPK P38 was activated in the LDLR KO mice, and LOX-1 deletion reduced this signal. In conclusion, LOX-1 deletion sustains endothelial function leading to a reduction in atherogenesis in association with reduction in proinflammatory and prooxidant signals.


Metabolomics | 2007

Proposed minimum reporting standards for data analysis in metabolomics

Royston Goodacre; David Broadhurst; Age K. Smilde; Bruce S. Kristal; J. David Baker; Richard D. Beger; Conrad Bessant; Susan C. Connor; Giorgio Capuani; Andrew Craig; Timothy M. D. Ebbels; Douglas B. Kell; Cesare Manetti; Jack Newton; Giovanni Paternostro; Ray L. Somorjai; Michael Sjöström; Johan Trygg; Florian Wulfert

The goal of this group is to define the reporting requirements associated with the statistical analysis (including univariate, multivariate, informatics, machine learning etc.) of metabolite data with respect to other measured/collected experimental data (often called meta-data). These definitions will embrace as many aspects of a complete metabolomics study as possible at this time. In chronological order this will include: Experimental Design, both in terms of sample collection/matching, and data acquisition scheduling of samples through whichever spectroscopic technology used; Deconvolution (if required); Pre-processing, for example, data cleaning, outlier detection, row/column scaling, or other transformations; Definition and parameterization of subsequent visualizations and Statistical/Machine learning Methods applied to the dataset; If required, a clear definition of the Model Validation Scheme used (including how data are split into training/validation/test sets); Formal indication on whether the data analysis has been Independently Tested (either by experimental reproduction, or blind hold out test set). Finally, data interpretation and the visual representations and hypotheses obtained from the data analyses.


Nature Biotechnology | 2005

Summary recommendations for standardization and reporting of metabolic analyses.

John C. Lindon; Jeremy K. Nicholson; Elaine Holmes; Hector C. Keun; Andrew Craig; Jake T. M. Pearce; Stephen J. Bruce; Nigel Hardy; Susanna-Assunta Sansone; Henrik Antti; Pär Jonsson; Clare A. Daykin; Mahendra Navarange; Richard D. Beger; Elwin Verheij; Alexander Amberg; Dorrit Baunsgaard; Glenn H. Cantor; Lois D. Lehman-McKeeman; Mark Earll; Svante Wold; Erik Johansson; John N. Haselden; Kerstin Kramer; Craig E. Thomas; Johann Lindberg; Ian D. Wilson; Michael D. Reily; Donald G. Robertson; Hans Senn

The Standard Metabolic Reporting Structures (SMRS) working group outlines its vision for an open,community-driven specification for the standardization and reporting of metabolic studies.The Standard Metabolic Reporting Structures (SMRS) working group outlines its vision for an open,community-driven specification for the standardization and reporting of metabolic studies.


Archives of Microbiology | 2000

Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin.

Hor-Gil Hur; Jackson O. Lay; Richard D. Beger; James P. Freeman; Fatemeh Rafii

Abstract. Fecal bacteria from a healthy individual were screened for the specific bacteria involved in the metabolism of dietary isoflavonoids. Two strains of bacteria capable of producing primary and secondary metabolites from the natural isoflavone glycosides daidzin and genistin were detected. The metabolites were identified by comparison of their HPLC/mass, 1H NMR and UV spectra with those of standard and synthetic compounds. Both Escherichia coli HGH21 and the gram-positive strain HGH6 converted daidzin and genistin to the their respective aglycones daidzein and genistein. Under anoxic conditions, strain HGH6 further metabolized the isoflavones daidzein and genistein to dihydrodaidzein and dihydrogenistein, respectively. The reduction of a double bond between C-2 and C-3 to a single bond was isoflavonoid-specific by strain HGH6, which did not reduce a similar bond in the flavonoids apigenin and chrysin. Strain HGH6 did not further metabolize dihydrodaidzein and dihydrogenistein. This is the first study in which specific colonic bacteria that are involved in the metabolism of daidzin and genistin have been detected.


Toxicology and Applied Pharmacology | 2010

Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity

Richard D. Beger; Jinchun Sun; Laura K. Schnackenberg

Hepatotoxicity and nephrotoxicity are two major reasons that drugs are withdrawn post-market, and hence it is of major concern to both the FDA and pharmaceutical companies. The number of cases of serious adverse effects (SAEs) in marketed drugs has climbed faster than the number of total drug prescriptions issued. In some cases, preclinical animal studies fail to identify the potential toxicity of a new chemical entity (NCE) under development. The current clinical chemistry biomarkers of liver and kidney injury are inadequate in terms of sensitivity and/or specificity, prompting the need to discover new translational specific biomarkers of organ injury. Metabolomics along with genomics and proteomics technologies have the capability of providing translational diagnostic and prognostic biomarkers specific for early stages of liver and kidney injury. Metabolomics has several advantages over the other omics platforms such as ease of sample preparation, data acquisition and use of biofluids collected through minimally invasive procedures in preclinical and clinical studies. The metabolomics platform is reviewed with particular emphasis on applications involving drug-induced hepatotoxicity and nephrotoxicity. Analytical platforms for metabolomics, chemometrics for mining metabolomics data and the applications of the metabolomics technologies are covered in detail with emphasis on recent work in the field.


Journal of Chromatography B | 2008

Metabonomics evaluation of urine from rats given acute and chronic doses of acetaminophen using NMR and UPLC/MS☆

Jinchun Sun; Laura K. Schnackenberg; Ricky D. Holland; Thomas C. Schmitt; Glenn H. Cantor; Richard D. Beger

Urinary metabolic perturbations associated with acute and chronic acetaminophen-induced hepatotoxicity were investigated using nuclear magnetic resonance (NMR) spectroscopy and ultra performance liquid chromatography/mass spectrometry (UPLC/MS) metabonomics approaches to determine biomarkers of hepatotoxicity. Acute and chronic doses of acetaminophen (APAP) were administered to male Sprague-Dawley rats. NMR and UPLC/MS were able to detect both drug metabolites and endogenous metabolites simultaneously. The principal component analysis (PCA) of NMR or UPLC/MS spectra showed that metabolic changes observed in both acute and chronic dosing of acetaminophen were similar. Histopathology and clinical chemistry studies were performed and correlated well with the PCA analysis and magnitude of metabolite changes. Depletion of antioxidants (e.g. ferulic acid), trigonelline, S-adenosyl-L-methionine, and energy-related metabolites indicated that oxidative stress was caused by acute and chronic acetaminophen administration. Similar patterns of metabolic changes in response to acute or chronic dosing suggest similar detoxification and recovery mechanisms following APAP administration.


Archives of Microbiology | 2003

Variations in metabolism of the soy isoflavonoid daidzein by human intestinal microfloras from different individuals

Fatemeh Rafii; Christy Davis; Miseon Park; Thomas M. Heinze; Richard D. Beger

Isoflavonoids found in legumes, such as soybeans, are converted by intestinal bacteria to metabolites that might have increased or decreased estrogenic activity. Variation in the effects of dietary isoflavonoids among individuals has been attributed to differences in their metabolism by intestinal bacteria. To investigate this variation, the metabolism of the isoflavonoid daidzein by bacteria from ten fecal samples, provided at different times by six individuals on soy-containing diets, was compared. After anaerobic incubation of bacteria with daidzein for 2 weeks, four samples had metabolized daidzein and six samples had not. Three of the positive samples were from individuals whose microflora had not metabolized daidzein in previous samples. Dihydrodaidzein was observed in one sample, dihydrodaidzein and equol in another sample, and equol and O-desmethylangolensin in two other samples. These results corroborate the hypothesis that the microflora of the gastrointestinal tract of an individual influences the particular isoflavone metabolites produced following consumption.


Journal of Chromatography A | 2000

Evaluation of major active components in St. John’s Wort dietary supplements by high-performance liquid chromatography with photodiode array detection and electrospray mass spectrometric confirmation

Frances F. Liu; Catharina Y. W. Ang; Thomas M. Heinze; Joshua D. Rankin; Richard D. Beger; James P. Freeman; Jackson O. Lay

A RP-HPLC method with photodiode array detection and LC-electrospray ionization (ESI) MS confirmation was established for the determination of major active components in St. Johns Wort dietary supplement capsules. The samples alternatively were extracted with ethanol-acetone (2:3) using a 55 degrees C water-bath shaker or an ambient temperature ultrasonic bath. Extracts were separated by RP-C18 chromatography using a 95-min water-methanol-acetonitrile-trifluoroacetic acid gradient. The major components were identified by photodiode array detection and then confirmed by LC-ESI-MS. The quantification of components was performed using an internal standard (luteolin). This method may serve as a valuable tool for the quality evaluation of St. Johns Wort dietary supplement products.


Toxicology Letters | 2003

Riddelliine N-oxide is a phytochemical and mammalian metabolite with genotoxic activity that is comparable to the parent pyrrolizidine alkaloid riddelliine.

Ming W. Chou; Yu-Ping Wang; Jian Yan; Ya-Chen Yang; Richard D. Beger; Lee D. Williams; Daniel R. Doerge; Peter P. Fu

Pyrrolizidine alkaloids (PAs) and their N-oxide derivatives are naturally-formed genotoxic phytochemicals that are widely distributed throughout the world. Although, the quantities of PAs and PA N-oxides in plants are nearly equal, the biological and genotoxic activities of PA N-oxides have not been studied extensively. PA N-oxides are major metabolites of PAs and are generally regarded as detoxification products. However, in this study, we report that rat liver microsomes converted riddelliine N-oxide to the genotoxic 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP) metabolite. Metabolism of riddelliine N-oxide by rat liver microsomes under hypoxic conditions (argon) generated predominantly the parent PA, riddelliine. The reduction of riddelliine N-oxide to riddelliine was diminished, when the metabolism of riddelliine N-oxide with rat liver microsomes was conducted aerobically. Rat liver microsomal incubations of riddelliine N-oxide in the presence of calf thymus DNA produced a set of DHP-derived DNA adducts as detected and quantified by 32P-postlabeling/HPLC. The same DHP-derived DNA adducts were also found in liver DNA of F344 rats fed riddelliine N-oxide or riddelliine. When rats received doses of 1.0 mg/kg riddelliine N-oxide for three consecutive days, the level of DNA adducts was 39.9 +/- 0.6 adducts/10(7) nucleotides, which was 2.6-fold less than that measured in rats treated with riddelliine at the same dose. We have previously shown that these DHP-derived DNA adducts are produced by chronic feeding of riddelliine and that the adduct levels correlated with liver tumor formation. Results presented in this paper indicate that riddelliine N-oxide, through its conversion to riddelliine, is also a potential genotoxic hepatocarcinogen.

Collaboration


Dive into the Richard D. Beger's collaboration.

Top Co-Authors

Avatar

Laura K. Schnackenberg

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Jinchun Sun

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Jon G. Wilkes

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Lisa Pence

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Dan A. Buzatu

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Sudeepa Bhattacharyya

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jackson O. Lay

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

James P. Freeman

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Xi Yang

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Laura P. James

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge