Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard D. Broadwell is active.

Publication


Featured researches published by Richard D. Broadwell.


Experimental Neurology | 1993

Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system

Richard D. Broadwell; Michael V. Sofroniew

Extracellular pathways circumventing the mammalian blood-brain fluid barriers (e.g., blood-brain and blood-CSF barriers) have been investigated in the rat by immunohistochemical localization of the endogenous serum proteins albumin, IgG, complement C-9, and IgM and by the exogenous tracer protein horseradish peroxidase (HRP). A demonstrable extracellular pathway into the central nervous system (CNS) is evident at the level of the subarachnoid space/pial surface. Immunoreaction products for the serum proteins and reaction product of intravenously administered HRP are identified over the entire pial surface, in the Virchow-Robin spaces and subpial cortical grey matter, and within phagocytes occupying the subarachnoid space/pial surface and perivascular clefts throughout the CNS. From specific circumventricular organs (e.g., median eminence, area postrema, subfornical organ), well known to lie outside the blood-brain barrier (BBB), each of the blood-borne proteins readily enters adjacent white and grey matter and the ventricular system for subsequent rostrocaudal labeling of the ependymal cell lining. Similar immunohistochemical and blood-borne HRP results are obtained in the CNS of the neonatal rat. Peroxidase delivered into the aorta of postmortem adult rats confirms the presence of a BBB in brain sites containing blood vessels impermeable to blood-borne HRP and the absence of a BBB in sites revealed as leaky to blood-borne HRP in the live rat. The results suggest blood-borne macromolecules, including those of the immune and complement systems, have potential widespread, extracellular distribution within the CNS and cerebrospinal fluid from sites deficient in a BBB (e.g., subarachnoid space/pial surface, circumventricular organs). These observations may have important clinical implications regarding experimental and pathologic autoimmune dysfunction within the CNS and impact on the interpretation of potential transcytosis of blood-borne peptides and proteins through the cerebral endothelium in vivo. A summary diagram of suspected extracellular and intracellular pathways circumventing the blood-brain fluid barriers is provided.


Journal of Neurocytology | 1986

Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes

Anne M. Cataldo; Richard D. Broadwell

SummaryIntracellular glycogen and glucose-6-phosphatase (G6Pase) activity were identified cytochemically within epithelia of the choroid plexus and ependyma of the cerebral ventricles including the median eminence and area postrema, the cerebral endothelium and pericytes from control, salt-stressed and fasted adult mice. Identification of glycogen was obtained by employing osmium tetroxide-potassium ferrocyanide and the periodic acid-thiocarbohydrazide-silver protein technique as ultrastructural contrast stains. A lead-capture method was used to localize G6Pase activity with glucose-6-phosphate or mannose-6-phosphate as substrate. Cerebral G6Pase functions predominantly as a phosphohydrolase to convert glucose-6-phosphate to glucose. Some glucose-6-phosphatein vivo may be derived from the breakdown of glycogen stores. Within the sampled cell types, presumptive glycogen appeared as electron-dense, isodiametric particles scattered throughout the cytoplasm. Reaction product for G6Pase activity was localized consistently within the lumen of the nuclear envelope and endoplasmic reticulum and frequently within an outer saccule of the Golgi complex under normal conditions. Choroid plexus epithelia from stressed mice exhibited a qualitative increase in cytoplasmic glycogen and a decrease in G6Pase activity; the other cell types did not express demonstrable alterations in glycogen concentration and G6Pase activity. The results indicate that glycogen and G6Pase activity are prevalent within non-neural cells of the adult mammalian CNS. Glucose utilization in the choroid plexus epithelium may be altered by stressful conditions that influence the functional activity of this cell.


Journal of Neurochemistry | 2008

Blood to Brain and Brain to Blood Passage of Native Horseradish Peroxidase, Wheat Germ Agglutinin, and Albumin: Pharmacokinetic and Morphological Assessments

William A. Banks; Richard D. Broadwell

Abstract: Native horseradish peroxidase (HRP) and the lectin wheat germ agglutinin (WGA) conjugated to HRP are protein probes represented in the blood‐brain barrier (BBB) literature for elucidating morphological routes of passage between blood and brain. We report the application of established pharmacokinetic methods, e.g., multiple‐time regression analysis and capillary depletion technique, to measure and compare bidirectional rates of passage between blood and brain for radioactive iodine‐labeled HRP (I‐HRP), WGA‐HRP (I‐WGA‐HRP), and the serum protein albumin (I‐ALB) following administration of the probes intravenously (i.v.) or by intracerebroventricular (i.c.v.) injection in mice. The pharmacokinetic data are supplemented with light and electron microscopic analyses of HRP and WGA‐HRP delivered i.v. or by i.c.v. injection. The rates of bidirectional movement between blood and brain are the same for coinjected I‐HRP and I‐ALB. Blood‐borne HRP, unlike WGA‐HRP, has unimpeded access to the CNS extracellularly through sites deficient in a BBB, such as the circumventricular organs and subarachnoid space/pial surface. Nevertheless, blood‐borne I‐WGA‐HRP enters the brain ˜10 times more rapidly than I‐HRP and I‐ALB. Separation of blood vessels from the neocortical parenchyma confirms the entry of blood‐borne I‐WGA‐HRP to the brain and sequestration of I‐WGA‐HRP by cerebral endothelial cells. Nearly half the I‐WGA‐HRP radioactivity associated with cortical vessels is judged to be subcellular. Light microscopic results suggest the extracellular pathways into the brain available to blood‐borne native HRP do not represent predominant routes of entry for blood‐borne WGA‐HRP. Ultrastructural analysis further suggests WGA‐HRP is likely to undergo adsorptive transcytosis through cerebral endothelia from blood to brain via specific subcellular compartments within the endothelium. Entry of blood‐borne I‐WGA‐HRP, but not of I‐ALB, is stimulated with coinjected unlabeled WGA‐HRP, suggesting the latter may enhance the adsorptive endocytosis of blood‐borne I‐WGA‐HRP. With i.c.v. coinjection of I‐WGA‐HRP and I‐ALB, I‐WGA‐HRP exits the brain more slowly than I‐ALB. The brain to blood passage of I‐WGA‐HRP is nil with inclusion of unlabeled WGA‐HRP, which does not alter the exit of I‐ALB. Adsorptive endocytosis of i.c.v. injected WGA‐HRP appears restricted largely to cells lining the ventricular cavities, e.g., ependymal and choroid plexus epithelia. In summary, the data suggest that the bidirectional rates of passage between brain and blood for native HRP are comparable to those for albumin. Blood‐borne WGA‐HRP is assessed to enter the brain more rapidly than native HRP and albumin, perhaps by the process of adsorptive transcytosis through BBB endothelia, but has difficulty leaving the CNS; the latter result may be due to avid binding and adsorptive endocytosis of WGA‐HRP by exposed CNS cells. Neither native HRP nor WGA‐HRP alters the integrity of the BBB to albumin. For this reason, both native HRP and WGA‐HRP are suitable probes for investigating the permeability of the BBB to macromolecules in vivo.


Journal of Neurocytology | 1993

Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA-HRP and the blood-brain and brain-blood barriers.

J. C. Villegas; Richard D. Broadwell

SummaryMorphological evidence of the potential for adsorptive transcytosis of protein through the mammalian blood-brain fluid barriers, first reported from this laboratory in the mouse, has been confirmed and expanded upon in rats injected intravenously or into the lateral cerebral ventricle/subarachnoid space with the exogenous lectin wheatgerm agglutinin (WGA) conjugated to horseradish peroxidase (HRP). Blood-borne WGA-HRP rapidly enters cerebral endothelia by the process of adsorptive endocytosis and labels the vascular tree throughout the CNS. At 3 h post-injection and longer, WGA-HRP occupies the perivascular clefts and labels perivascular cells and basal lamina; this suspected transendothelial transfer of the lectin conjugate from blood to brain involves specific constituents of the endothelial endomembrane system of organelles (e.g., plasmalemma, vesicles, endosomes, Golgi complex). Within 6 h, reaction product is evident in extracellular clefts beyond the perivascular basal lamina and labels endocytic vesicles, endosomes, and dense bodies within cells and processes of the neuropil. Exposure of the abluminal surface of blood-brain barrier endothelia for 1–18 h to WGA-HRP delivered into the cerebral ventricles or subarachnoid space indicates blood-brain barrier endothelia do not engage in demonstrable adsorptive endocytosis at the abluminal surface. In this preparation, no endothelial organelles comparable to those sequestering blood-borne WGA-HRP are labelled with the lectin conjugate; hence, significant adsorptive transcytosis of WGA-HRP through cerebral endothelia from brain to blood is unlikely. The demonstrable difference in membrane internalization of the luminal versus abluminal plasmalemma of blood-brain barrier endothelia suggests the blood-brain barrier is polarized regarding adsorptive endocytosis of WGA-HRP. If adsorptive transcytosis of macromolecules through the blood-brain barrier does occur, the process appears unidirectional, from blood to brain but not from brain to blood. Absence of demonstrable endocytosis at the abluminal front is an enigma in the scheme of transcytosis through the blood-brain barrier from blood to brain insofar as exocytosis and endocytosis are complementary events in the cellular secretory process. This unconventional membrane behavior associated with the abluminal plasmalemma argues against a significant transcytosis of blood-borne protein through blood-brain barrier endothelia. The potential for transcytosis of macromolecules through the blood-cerebrospinal fluid barrier of choroid plexus epithelia is not as problemmatic as that through blood-brain barrier endothelia; additional evidence is provided to suggest choroid plexus epithelia participate in adsorptive endocytosis circumferentially and adsorptive transcytosis of WGA-HRP bidirectionally between the blood and cerebrospinal fluid.


Surgical Neurology | 1991

Blood-brain barrier alteration after microwave-induced hyperthermia is purely a thermal effect. I, Temperature and power measurements

Eiji Moriyama; Michael Salcman; Richard D. Broadwell

The effect of microwave-induced hyperthermia on the blood-brain barrier was studied in 21 Sprague-Dawley rats. Under sodium pentobarbital anesthesia, animals were place in a stereotactic frame, and an interstitial microwave antenna operating at 2450 MHz was inserted in a bony groove drilled parallel to the sagittal suture. Some antennae were equipped with an external cooling jacket. Temperature measurements were made lateral to the antenna by fluoroptical thermometry, and power was calculated from the time-temperature profile. Five minutes prior to termination of microwave irradiation, horseradish peroxidase (1 mg/20 g body weight) was injected intravenously. Extravasation of horseradish peroxidase was observed in brain tissue heated above 44.3 degrees C for 30 minutes and at 42.5 degrees C for 60 minutes. Microwave irradiation failed to open the blood-brain barrier when brain temperatures were sustained below 40.3 degrees C by the cooling system. Extravasation of blood-borne peroxidase occurred at sites of maximal temperature elevation, even when these did not coincide with the site of maximum power density. The data suggest that microwave-induced hyperthermia is an effective means for opening the blood-brain barrier and that the mechanism is not related to the nonthermal effect of microwaves.


Progress in Brain Research | 1990

Chapter 12 Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS

Richard D. Broadwell; Harry M. Charlton; Paul S. Ebert; W.F. Hickey; Villegas J; A.L. Wolf

Available evidence suggests that blood vessels indigenous to solid CNS and peripheral tissues grafted to the brain are sustained and maintain the morphological and permeability characteristics they manifest in normal life. Furthermore, these vessels of graft origin anastomose (albeit not rapidly) with vessels of the surrounding host tissue predominantly at the host-graft interface and less so, or not at all, within the graft itself. For these reasons, blood-brain and brain-blood barriers, evident in the late fetal and neonatal CNS, can be expected to exist within CNS grafts placed intracerebrally or extracerebrally, providing the graft remains viable. Peripheral neural and non-neural tissues not possessing cellular barriers to circulating macromolecules do not acquire such barriers subsequent to their transplantation within the CNS. The absence of a blood-brain barrier in the adrenal gland grafted intracerebrally may be relevant for the treatment of Parkinsons disease with blood-borne therapeutics. Compared to solid tissue grafts, cell suspension grafts have the potential of becoming vascularized rapidly. That cell suspensions of neurons and of glia are supplied with BBB vessels of host origin and that the permeability characteristics of host BBB vessels are altered by a tumor cell suspension reaffirm the belief that the type of transplanted cell/tissue indeed determines the permeability characteristics of the blood vessels supplying it. The suspected immunologic privilege of the CNS is not absolute. Eventual host rejection of allografts placed within the third ventricle may be a dual consequence of the absence of a BBB at the level of the host median eminence and involvement of the minor histocompatibility complex.


Experimental Neurology | 1991

Allografts of CNS tissue possess a blood-brain barrier: I. Grafts of medial preoptic area in hypogonadal mice

Richard D. Broadwell; Harry M. Charlton; William F. Ganong; Michael Salcman; M.V. Sofroniew

This study represents the first part of a three-part investigation of blood vessels supplying CNS tissue transplanted within the brains of adult mammalian hosts. The results emphasize that blood vessels in solid CNS grafts contribute a blood-brain barrier to that of the host. Neurosecretory cells in basal forebrain grafts placed intraventricularly on the dorsal surface of the host median eminence, a neurosecretory site containing fenestrated blood vessels, do not stimulate similar blood vessels to inhabit the transplanted tissue. Solid grafts of the medial preoptic area containing neurons that synthesize and secrete gonadotropic hormone-releasing hormone (GnRH) were obtained from AKR mice and placed into the third cerebral ventricle of hypogonadal (HPG) mice genetically incapable of synthesizing GnRH. GnRH neurons in the allografts were confirmed immunohistochemically. Blood vessels supplying the host median eminence and the allograft at 10 days to 3 months post-transplantation were analyzed with peroxidase cytochemistry applied in three ways: to HPG mice injected systemically with native horseradish peroxidase; to HPG mice infused into the aorta with peroxidase subsequent to perfusion fixation; and to HPG mice brains fixed by immersion and incubated for endogenous peroxidase activity in red cells retained within blood vessels. The median eminence of the HPG mouse was innervated by GnRH neurons residing within the graft, and blood vessels traversing the median eminence-allograft interface were seen rarely. The allografts contained no fenestrated endothelia, and no extravasations of blood-borne HRP were related directly to leaky blood vessels supplying the grafted tissue. Endothelial cells throughout the CNS grafts were similar morphologically to blood-brain barrier endothelia; they were nonfenestrated, exhibited interendothelial tight junctional complexes and an endomembrane system of organelles, and they endocytosed blood-borne HRP that eventually was sequestered within dense body lysosomes. The results support the belief that blood vessels supplying CNS tissue transplanted to a host brain manifest endothelial characteristics identical to those of the tissue in normal life and to those of the host CNS.


Experimental Neurology | 1991

Allografts of CNS tissue possess a blood-brain barrier: II. Angiogenesis in solid tissue and cell suspension grafts

Richard D. Broadwell; Harry M. Charlton; Paul S. Ebert; William F. Hickey; Yasaman Shirazi; Juan Villegas; Aizik L. Wolf

Angiogenesis and patency of blood vessels were analyzed qualitatively in solid CNS and peripheral tissue syngeneic, allogeneic, and xenogeneic grafts and in individual cell suspension grafts of astrocytes, fibroblasts, PC12, and three additional tumor cell lines placed intracerebrally in adult host mice. Postgrafting survival times were 1 day through 4 weeks. The patency of graft vessels was determined in sections from immersion-fixed tissues incubated to reveal the endogenous peroxidase activity of host red cells trapped within the lumen of blood vessels. Additionally, horseradish peroxidase (HRP) was administered intravenously to live hosts; HRP labels host brain and graft vessels on the luminal surface and reveals the presence or absence of a blood-brain barrier (BBB) within the grafts. The origins of blood vessels supplying solid tissue xenografts were identified immunohistochemically with primary antibodies against host (athymic AKR mice) and donor (fetal Lewis rats) major histocompatibility complex (MHC) class I. Blood vessels supplying solid CNS grafts at 1-7 days post-transplantation were identified ultrastructurally and possessed interendothelial tight junctional complexes; however, they were not perfused with either host blood or blood-borne HRP prior to 8 days. Graft vessels at 10 days were outlined consistently by peroxidase-positive red cells in immersion-fixed material and labeled with blood-borne HRP. These vessels provided a BBB to the circulating HRP and exhibited interendothelial tight junctions. Evidence of angiogenesis within solid anterior pituitary grafts and the variety of cell suspension grafts was obtained prior to 3 days post-transplantation in immersion-fixed preparations; the vessels, with the notable exception of those supplying astrocyte cell suspensions, failed to present a BBB to blood-borne peroxidase. Endothelia in the solid pituitary allografts and the PC12 cell grafts were highly fenestrated and exhibited open interendothelial junctions; those in the tumor and fibroblast cell grafts, for the most part, appeared nonfenestrated, and many possessed open interendothelial junctional complexes. Immunostaining for host and donor MHC class I revealed that donor blood vessels predominate over host vessels in CNS xenografts and supply pituitary xenografts exclusively; in both preparations, donor vessels were not identified within the host CNS. Because cell suspension grafts were derived from endothelia-free preparations grown in culture, blood vessels supplying these grafts were necessarily of host CNS origin and manifested a morphological transformation from a BBB to a non-BBB endothelium. The data suggest that angiogenesis in solid CNS grafts placed into the adult host CNS, compared to similarly placed solid peripheral tissue/cell suspension grafts, is not rapid.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Neurocytology | 1988

Transcytosis of protein through the mammalian cerebral epithelium and endothelium. I: Choroid plexus and the blood-cerebrospinal fluid barrier

Brian J. Balin; Richard D. Broadwell

SummaryThe potential for transcytosis (endocytosis → intracellular transport → exocytosis) of protein and membrane events associated with fluid phase and adsorptive endocytic processes within epithelia of the choroid plexus [blood-cerebrospinal fluid (CSF) barrier] were investigated in mice injected intravenously or into the lateral cerebral ventricle with native horseradish peroxidase (HRP) or the lectin wheatgerm agglutinin (WGA) conjugated to HRP. WGA binds to specific cell surface oligosaccharides and enters cells by the process of adsorptive endocytosis; native HRP is taken into cells non-specifically by fluid phase endocytosis. The lysosomal system of organelles and the endoplasmic reticulum, identified by enzyme cytochemical markers applied to choroid epithelia, were analysed for possible participation in transcytosis and compared to epithelial organelles harbouring the exogenous tracer proteins. Blood-borne native HRP was endocytosed readily by choroid epithelia whereas WGA-HRP was not, perhaps because WGA-HRP does not escape fenestrated endothelia as easily as native HRP. The blood-borne proteins incorporated within endocytic vesicles by choroid epithelia were directed to endosomes (prelysosomes) and secondary lysosomes (e.g. tubules, multivesicular/dense bodies) for eventual degradation and did not reach the apical/microvillus surface. Both CSF-borne native HRP and WGA-HRP entered choroid epithelia within endocytic vesicles derived from the microvillus border. Native HRP, ultimately sequestered within endosomes and secondary lysosomes, failed to undergo transcytosis through the epithelia into the basolateral clefts. Conversely, CSF-borne WGA-HRP was transported through the epithelia and released into the basolateral clefts within 10 min post-injection. The lectin conjugate labelled epithelial vesicles, endosomes, secondary lysosomes and, at 30 min post-injection, the transmost saccule of the Golgi complex which exhibits acid hydrolase activity. Tubular profiles, related either to the endosome apparatus or to the lysosomal system, and the endoplasmic reticulum did not appear involved in the transcytotic pathway. The data suggest that CSF-borne protein entering the choroid epithelium by adsorptive endocytosis can undergo rapid transcytosis through the cell. The results provide insight to transcytotic pathways utilizing vesicles, the endosomal apparatus, and the Golgi complex within the choroid epithelium for circumventing the blood-CSF barrier. Hypothesized membrane events and morphological associations among constituents of the endomembrane system within the choroid epithelium are summarized diagrammatically.


Journal of Neurocytology | 1987

Tubular profiles do not form transendothelial channels through the blood-brain barrier

Brian J. Balin; Richard D. Broadwell; Michael Salcman

SummaryThe contribution of tubular profiles within the mammalian cerebral endothelium to the formation of transcellular channels was analysed following exposure of the endothelium to native horseradish peroxidase (HRP) dissolved in saline or dimethyl sulphoxide (DMSO) administered intravenously in mice. Within 5–15 min, but not at 30 min to 2h postinjection, peroxidase-positive extravasations were evident within the parenchyma of the forebrain and brainstem of mice exposed and not exposed to DMSO. The extravasations may be associated with the rupture of interendothelial tight junctions at the level of arterioles as a consequence of the perfusion-fixation process. Ultrastructural inspection of endothelia within and away from areas of peroxidase extravasation revealed the following intraendothelial, peroxidase-positive organelles: presumptive endocytic vesicles, endosomes (a prelysosomal compartment), multivesicular and dense bodies, and tubular profiles. Statistical analysis of the concentration of HRP-labelled presumptive endocytic vesicles, which may coalesce to form tubules, within endothelia from mice injected intravenously with HRP-DMSO compared to mice receiving HRP-saline revealed no significant difference. HRP-positive tubular profiles were blunt-ended, variable in length and width, and appeared free in the cytoplasm or in continuity with dense bodies. Labelled tubules free in the cytoplasm were positioned parallel to the luminal and abluminal plasma membranes and were less frequently oblique or perpendicular to these membranes. Tubular profiles analysed in serial thin sections or with a goniometer tilt stage did not establish membrane continuities with the luminal and abluminal plasma membranes. Peroxidase-positive tubular profiles were similar morphologically to those exhibiting acid hydrolase activity but did not share morphological and enzyme cytochemical similarities with the endoplasmic reticulum that stained for glucose-6-phosphatase (G6Pase) activity. G6Pase-positive profiles of endoplasmic reticulum were not observed to contribute to a transendothelial canalicular network. Our results suggest that: (i) peroxidase-labelled tubules, acid hydrolase-positive tubules, and G6Pase-positive endoplasmic reticulum do not form transcellular channels through the cerebral endothelium; (ii) tubular profiles labelled with blood-borne HRP in the cerebral endothelium are associated with the eridosome apparatus and/or the lysosomal system of organelles; and (iii) DMSO does not appear to alter the permeability of the blood-brain barrier to blood-borne protein.

Collaboration


Dive into the Richard D. Broadwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Villegas J

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

W.F. Hickey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

A.L. Wolf

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Aizik L. Wolf

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge