Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard D. Harvey is active.

Publication


Featured researches published by Richard D. Harvey.


American Journal of Drug Delivery | 2005

Polymer colon drug delivery systems and their application to peptides, proteins, and nucleic acids

Sandrine Bourgeois; Richard D. Harvey; Elias Fattal

Most therapeutic peptides and proteins are administered via the parenteral route, which presents numerous drawbacks and limitations. To overcome these drawbacks, alternative administration routes, such as oral or mucosal routes, have been investigated. The oral route presents a series of attractive advantages for the administration of therapeutic compounds, such as the avoidance of the pain and discomfort associated with injections, good patient compliance, and being less expensive to produce. However, oral administration of peptides, proteins, or nucleic acids also presents several difficulties because of their instability in the upper gastrointestinal (GI) tract and their poor transport across biologic membranes. Among the various approaches developed to improve the oral delivery of peptides, proteins, or nucleic acids, specific delivery to the colon has attracted a lot of interest because of its potential for the local treatment of colonic diseases, systemic delivery of poorly absorbed drugs, and vaccine delivery. Numerous pharmaceutical approaches described in this review have been exploited for the development of colon-targeted drug delivery systems using various concepts, such as pH-dependent, time-dependent, pressure-controlled, or bacterially triggered delivery systems. The action of the pH-dependent delivery systems is based on pH differences between the stomach and the ileum. Time-dependent delivery systems are based on the transit time of pharmaceutical dosage forms in the GI tract, drug release being delayed until they reach the colon. A combination of pH- and time-dependent delivery systems has also been described to avoid the drawbacks of both strategies. The pressure-controlled delivery concept exploits the physiologic luminal pressure of the colon as the driving force for site-specific delivery of drugs. Finally, bacterially triggered delivery systems exploit the enormous diversity of enzymatic activity associated with the colonic microflora. Bacterially triggered delivery systems are generally composed of polymers, which are specifically degraded by colonic enzymes of microbial origin. These polymers have been used to form prodrugs with the drug moiety, as coating materials for the drug core, or as embedding media to entrap the drug into matrix or hydrogel systems. Each of these concepts has advantages and limitations. They present varied colonic specificity and, among them, bacterially triggered delivery systems in particular show the greatest potential for colonic delivery of peptides, proteins, and nucleic acids.


European Biophysics Journal | 2011

Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action

Christof Junkes; Richard D. Harvey; Kenneth D. Bruce; Rudolf Dölling; Mojtaba Bagheri; Margitta Dathe

This study compares the effect of cyclic R-, W-rich peptides with variations in amino acid sequences and sizes from 5 to 12 residues upon Gram negative and Gram positive bacteria as well as outer membrane-deficient and LPS mutant Escherichia coli (E.coli) strains to analyze the structural determinants of peptide activity. Cyclo-RRRWFW (c-WFW) was the most active and E.coli-selective sequence and bactericidal at the minimal inhibitory concentration (MIC). Removal of the outer membrane distinctly reduced peptide activity and the complete smooth LPS was required for maximal activity. c-WFW efficiently permeabilised the outer membrane of E.coli and promoted outer membrane substrate transport. Isothermal titration calorimetric studies with lipid A-, rough-LPS (r-LPS)- and smooth-LPS (s-LPS)-doped POPC liposomes demonstrated the decisive role of O-antigen and outer core polysaccharides for peptide binding and partitioning. Peptide activity against the inner E. coli membrane (IM) was very low. Even at a peptide to lipid ratio of 8/1, c-WFW was not able to permeabilise a phosphatidylglycerol/phosphatidylethanolamine (POPG/POPE) bilayer. Low influx of propidium iodide (PI) into bacteria confirmed a low permeabilising ability of c-WFW against PE-rich membranes at the MIC. Whilst the peptide effect upon eukaryotic cells correlated with the amphipathicity and permeabilisation of neutral phosphatidylcholine bilayers, suggesting a membrane disturbing mode of action, membrane permeabilisation does not seem to be the dominating antimicrobial mechanism of c-WFW. Peptide interactions with the LPS sugar moieties certainly modulate the transport across the outer membrane and are the basis of the E. coli selectivity of this type of peptides.


Applied Microbiology and Biotechnology | 2007

Eukaryotic integral membrane protein expression utilizing the Escherichia coli glycerol-conducting channel protein (GlpF).

Irene Neophytou; Richard D. Harvey; Jayne Lawrence; Phil Marsh; Barry Panaretou; David Barlow

A fusion protein expression system is described that allows for production of eukaryotic integral membrane proteins in Escherichia coli (E. coli). The eukaryotic membrane protein targets are fused to the C terminus of the highly expressed E. coli inner membrane protein, GlpF (the glycerol-conducting channel protein). The generic utility of this system for heterologous membrane-protein expression is demonstrated by the expression and insertion into the E. coli cell membrane of the human membrane proteins: occludin, claudin 4, duodenal ferric reductase and a J-type inwardly rectifying potassium channel. The proteins are produced with C-terminal hexahistidine tags (to permit purification of the expressed fusion proteins using immobilized metal affinity chromatography) and a peptidase cleavage site (to allow recovery of the unfused eukaryotic protein).


Biomacromolecules | 2015

Surface Chemistry of Photoluminescent F8BT Conjugated Polymer Nanoparticles Determines Protein Corona Formation and Internalization by Phagocytic Cells

Raha Ahmad Khanbeigi; Thais Fedatto Abelha; Arcadia Woods; Olivia Rastoin; Richard D. Harvey; Marie-Christine Jones; Ben Forbes; Mark Green; Helen L. Collins; Lea Ann Dailey

Conjugated polymer nanoparticles are being developed for a variety of diagnostic and theranostic applications. The conjugated polymer, F8BT, a polyfluorene derivative, was used as a model system to examine the biological behavior of conjugated polymer nanoparticle formulations stabilized with ionic (sodium dodecyl sulfate; F8BT-SDS; ∼207 nm; -31 mV) and nonionic (pegylated 12-hydroxystearate; F8BT-PEG; ∼175 nm; -5 mV) surfactants, and compared with polystyrene nanoparticles of a similar size (PS200; ∼217 nm; -40 mV). F8BT nanoparticles were as hydrophobic as PS200 (hydrophobic interaction chromatography index value: 0.96) and showed evidence of protein corona formation after incubation with serum-containing medium; however, unlike polystyrene, F8BT nanoparticles did not enrich specific proteins onto the nanoparticle surface. J774A.1 macrophage cells internalized approximately ∼20% and ∼60% of the F8BT-SDS and PS200 delivered dose (calculated by the ISDD model) in serum-supplemented and serum-free conditions, respectively, while cell association of F8BT-PEG was minimal (<5% of the delivered dose). F8BT-PEG, however, was more cytotoxic (IC50 4.5 μg cm(-2)) than F8BT-SDS or PS200. The study results highlight that F8BT surface chemistry influences the composition of the protein corona, while the properties of the conjugated polymer nanoparticle surfactant stabilizer used determine particle internalization and biocompatibility profile.


Biochemistry | 2017

Mechanism of Action of a Membrane-Active Quinoline-Based Antimicrobial on Natural and Model Bacterial Membranes

Alasdair T. M. Hubbard; Robert Barker; Reg Paul Rehal; Kalliopi-Kelli A. Vandera; Richard D. Harvey; Anthony Rm Coates

HT61 is a quinoline-derived antimicrobial, which exhibits bactericidal potency against both multiplying and quiescent methicillin resistant and sensitive Staphylococcus aureus, and has been proposed as an adjunct for other antimicrobials to extend their usefulness in the face of increasing antimicrobial resistance. In this study, we have examined HT61s effect on the permeability of S. aureus membranes and whether this putative activity can be attributed to an interaction with lipid bilayers. Using membrane potential and ATP release assays, we have shown that HT61 disrupts the membrane enough to result in depolarization of the membrane and release of intercellular constituents at concentrations above and below the minimum inhibitory concentration of the drug. Utilizing both monolayer subphase injection and neutron reflectometry, we have shown that increasing the anionic lipid content of the membrane leads to a more marked effect of the drug. In bilayers containing 25 mol % phosphatidylglycerol, neutron reflectometry data suggest that exposure to HT61 increases the level of solvent in the hydrophobic region of the membrane, which is indicative of gross structural damage. Increasing the proportion of PG elicits a concomitant level of membrane damage, resulting in almost total destruction when 75 mol % phosphatidylglycerol is present. We therefore propose that HT61s primary action is directed toward the cytoplasmic membrane of Gram-positive bacteria.


Biochimica et Biophysica Acta | 2016

The influence of rough lipopolysaccharide structure on molecular interactions with mammalian antimicrobial peptides

Gianluca Bello; Alice Bodin; M. Jayne Lawrence; David Barlow; A. James Mason; Robert Barker; Richard D. Harvey

The influence of Escherichia coli rough lipopolysaccharide chemotype on the membrane activity of the mammalian antimicrobial peptides (AMPs) human cathelicidin (LL37) and bovine lactoferricin (LFb) was studied on bilayers using solid state (2)H NMR (ssNMR) and on monolayers using the subphase injection technique, Brewster angle microscopy (BAM) and neutron reflectivity (NR). The two AMPs were selected because of their differing biological activities. Chain-deuterated dipalmitoylphosphatidylcholine (d62-DPPC) was added to the LPS samples, to highlight alterations in the system properties caused by the presence of the different LPS chemotypes and upon AMP challenge. Both LPS chemotypes showed a temperature dependent influence on the packing of the DPPC molecules, with a fluidizing effect exerted below the DPPC phase transition temperature (Tm), and an ordering effect observed above the Tm. The magnitude of these effects was influenced by LPS structure; the shorter Rc LPS promoted more ordered lipid packing compared to the longer Ra LPS. These differential ordering effects in turn influenced the penetrative activity of the two peptides, as the perturbation induced by both AMPs to Ra LPS-containing models was greater than that observed in those containing Rc LPS. The NR data suggests that in addition to penetrating into the monolayers, both LL37 and LFb formed a non-interacting layer below the LPS/DPPC monolayer. The overall activity of LL37, which showed a deeper penetration into the model membranes, was more marked than that of LFb, which appeared to localise at the interfacial region, thus providing evidence for the molecular origins of their different biological activities.


Langmuir | 2015

Characterization of the aggregates formed by various bacterial lipopolysaccharides in solution and upon interaction with antimicrobial peptides.

Gianluca Bello; Jonny Eriksson; Ann E. Terry; Katarina Edwards; M. Jayne Lawrence; David Barlow; Richard D. Harvey

The biophysical analysis of the aggregates formed by different chemotypes of bacterial lipopolysaccharides (LPS) before and after challenge by two different antiendotoxic antimicrobial peptides (LL37 and bovine lactoferricin) was performed in order to determine their effect on the morphology of LPS aggregates. Small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryoTEM) were used to examine the structures formed by both smooth and rough LPS chemotypes and the effect of the peptides, by visualization of the aggregates and analysis of the scattering data by means of both mathematical approximations and defined models. The data showed that the structure of LPS determines the morphology of the aggregates and influences the binding activity of both peptides. The morphologies of the worm-like micellar aggregates formed by the smooth LPS were relatively unaltered by the presence of the peptides due to their pre-existing high degree of positive curvature being little affected by their association with either peptide. On the other hand, the aggregates formed by the rough LPS chemotypes showed marked morphological changes from lamellar structures to ordered micellar networks, induced by the increase in positive curvature engendered upon association with the peptides. The combined use of cryoTEM and SANS proved to be a very useful tool for studying the aggregation properties of LPS in solution at biologically relevant concentrations.


Nanobiotechnology | 2005

Microencapsulation of nanoparticulate complexes of DNA with cationic lipids and polymers in pectin beads for targeted gene delivery

Richard D. Harvey; Sandrine Bourgeois; Peter Pietzonka; Laurent Désiré; Elias Fattal

Nanoparticulate complexes of plasmid DNA (pDNA) with cationic liposomes/polymer, of approx 200 nm diameter, were encapsulated with a high degree of efficiency within calcium pectinate gel beads. Electron microscopy showed the DNA nanocomplexes to be evenly distributed throughout the gel matrix. Controlled release of pDNA-lipid nanocomplexes was achieved by the action of pectinase enzymes, whereas release of naked and polymer-complexed DNA was found to be more greatly influenced by the swelling behavior of the polysaccharide matrices in buffer alone. Physical degradation of pDNA within pectin beads was found to be accelerated during bead drying, most probably as a result of shear forces generated within the gel matrices by the evaporation of water. Plasmid complexation with cationic liposomes provided a greater degree of protection for the DNA during bead drying than complexation with cationic polymer, and was shown to successfully transfect cultured cells after release from the beads, via the action of pectinase. Observations concerning the physical stability of nanocomplexed pDNA, and its encapsulation within and release from pectin gel beads, are discussed with reference to the electrostatic interactions existing between the various components.


Chemistry and Physics of Lipids | 2017

The influence of mild acidity on lysyl-phosphatidylglycerol biosynthesis and lipid membrane physico-chemical properties in methicillin-resistant Staphylococcus aureus

Reg Paul Rehal; Helene Marbach; Alasdair T. M. Hubbard; Anam A. Sacranie; Federica Sebastiani; Giovanna Fragneto; Richard D. Harvey

The increased biosynthesis of lysyl-phosphatidylglycerol in Staphylococcus aureus when cultured under conditions of mild acidity and the resultant increased proportion of this lipid in the plasma membrane of the bacterium, alters the physico-chemical properties of lipid bilayers in a manner which is itself dependent upon environmental pH. Clinically relevant strains of S. aureus, both methicillin susceptible and resistant, all exhibited increased lysyl-phosphatidylglycerol biosynthesis in response to mild environmental acidity, albeit to differing degrees, from ∼30% to ∼55% total phospholipid. Polar lipid extracts from these bacteria were analysed by 31P NMR and reconstituted into vesicles and monolayers, which were characterised by zeta potential measurements and Langmuir isotherms respectively. A combination of increased lysyl-phosphatidylglycerol content and mild environmental acidity were found to synergistically neutralise the charge of the membranes, in one instance altering the zeta potential from -56mV to +21mV, and induce closer packing between the lipids. Challenge of reconstituted S. aureus lipid model membranes by the antimicrobial peptide magainin 2 F5W was examined using monolayer subphase injection and neutron diffraction, and revealed that ionisation of the headgroup α-amine of lysyl-phosphatidylglycerol at pH 5.5, which reduced the magnitude of the peptide-lipid interaction by 80%, was more important for resisting peptide partitioning than increased lipid content alone. The significance of these results is discussed in relation to how colonising mildly acidic environments such as human mucosa may be facilitated by increased lysyl-phosphatidylglycerol biosynthesis and the implications of this for further biophysical analysis of the role of this lipid in bacterial membranes.


Langmuir | 2018

Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding

Laura Urbano; Luke A. Clifton; Hoi Ki Ku; Hannah Kendall-Troughton; Kalliopi-Kelli A. Vandera; Bruno Matarese; Thais Fedatto Abelha; Peixun Li; Tejal A. Desai; Cécile A. Dreiss; Robert Barker; Mark Green; Lea Ann Dailey; Richard D. Harvey

π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.

Collaboration


Dive into the Richard D. Harvey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard K. Heenan

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge