Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard D. Vann is active.

Publication


Featured researches published by Richard D. Vann.


Aviation, Space, and Environmental Medicine | 2009

Resolution and Severity in Decompression Illness

Richard D. Vann; Petar J. Denoble; Laurens E. Howle; Paul W. Weber; John J. Freiberger; Carl F. Pieper

omegaWe review the terminology of decompression illness (DCI), investigations of residual symptoms of decompression sickness (DCS), and application of survival analysis for investigating DCI severity and resolution. The Type 1 and Type 2 DCS classifications were introduced in 1960 for compressed air workers and adapted for diving and altitude exposure with modifications based on clinical judgment concerning severity and therapy. In practice, these proved ambiguous, leading to recommendations that manifestations, not cases, be classified. A subsequent approach assigned individual scores to manifestations and correlated total case scores with the presence of residual symptoms after therapy. The next step used logistic regression to find the statistical association of manifestations to residual symptoms at a single point in time. Survival analysis, a common statistical method in clinical trials and longitudinal epidemiological studies, is a logical extension of logistic regression. The method applies to a continuum of resolution times, allows for time varying information, can manage cases lost to follow-up (censored), and has potential for investigating questions such as optimal therapy and DCI severity. There are operational implications as well. Appropriate definitions of mild and serious manifestations are essential for computing probabilistic decompression procedures where severity determines the DCS probability that is acceptable. Application of survival analysis to DCI data would require more specific case information than is commonly recorded.


Plastic and Reconstructive Surgery | 1988

Decreased thrombogenicity of vascular prostheses following gas denucleation by hydrostatic pressure.

Richard D. Vann; Edmond F. Ritter; Richard S. Sepka; Bruce Klitzman; William J. Barwick

The high rate of thrombosis of 1.0-mm polytetrafluoroethylene (PTFE) grafts has limited their use in microvascular surgery. One possible reason for this is the blood-gas interface due to entrapped air in the interstices. The present study examines the effect on patency rates of elimination of this blood-gas interface by high pressurization. Comparing pressurized and nonpressurized grafts in the same animals showed a patency rate of 100 percent at 7 days for treated grafts, while the control (nonpressurized) grafts had all clotted by 1 hour. The implications for microvascular surgery as well as vascular surgery in general are discussed.


Journal of Applied Physiology | 2009

Marginal DCS events: their relation to decompression and use in DCS models

Laurens E. Howle; Paul W. Weber; Richard D. Vann; Mark C. Campbell

We consider the nature and utility of marginal decompression sickness (DCS) events in fitting probabilistic decompression models to experimental dive trial data. Previous works have assigned various fractional weights to marginal DCS events, so that they contributed to probabilistic model parameter optimization, but less so than did full DCS events. Inclusion of fractional weight for marginal DCS events resulted in more conservative model predictions. We explore whether marginal DCS events are correlated with exposure to decompression or are randomly occurring events. Three null models are developed and compared with a known decompression model that is tuned on dive trial data containing only marginal DCS and non-DCS events. We further investigate the technique by which marginal DCS events were previously included in parameter optimization, explore the effects of fractional weighting of marginal DCS events on model optimization, and explore the rigor of combining data containing full and marginal DCS events for probabilistic DCS model optimization. We find that although marginal DCS events are related to exposure to decompression, empirical dive data containing marginal and full DCS events cannot be combined under a single DCS model. Furthermore, we find analytically that the optimal weight for a marginal DCS event is 0. Thus marginal DCS should be counted as no-DCS events when probabilistic DCS models are optimized with binomial likelihood functions. Specifically, our study finds that inclusion of marginal DCS events in model optimization to make the dive profiles more conservative is counterproductive and worsens the models fit to the full DCS data.


Computers in Biology and Medicine | 2009

A computationally advantageous system for fitting probabilistic decompression models to empirical data

Laurens E. Howle; Paul W. Weber; Richard D. Vann

To investigate the nature and mechanisms of decompression sickness (DCS), we developed a system for evaluating the success of decompression models in predicting DCS probability from empirical data. Model parameters were estimated using maximum likelihood techniques. Exact integrals of risk functions and tissue kinetics transition times were derived. Agreement with previously published results was excellent including: (a) maximum likelihood values within one log-likelihood unit of previous results and improvements by re-optimization; (b) mean predicted DCS incidents within 1.4% of observed DCS; and (c) time of DCS occurrence prediction. Alternative optimization and homogeneous parallel processing techniques yielded faster model optimization times.


Plastic and Reconstructive Surgery | 1988

Mammary implants, diving, and altitude exposure.

Richard D. Vann; Ronald Riefkohl; Gregory S. Georgiade; Nicholas G. Georgiade

Mammary implants were exposed to various simulated dive profiles followed by altitude exposures to stimulate aircraft travel and then were observed for bubble formation and volume changes. Minimal volume changes occurred after each dive. Numerous bubbles formed, however, reaching their maximum size in 3 hours. By comparison, when implants were exposed to high altitude following a dive exposure, significant volume changes occurred. This in vitro study showed that bubble formation and volume expansion occur after exposing implants to diving and altitude, but the circumstances required to produce these changes in vivo are extremely unlikely to occur normally.


PLOS ONE | 2017

The probability and severity of decompression sickness

Laurens E. Howle; Paul W. Weber; Ethan A. Hada; Richard D. Vann; Petar J. Denoble; James West

Decompression sickness (DCS), which is caused by inert gas bubbles in tissues, is an injury of concern for scuba divers, compressed air workers, astronauts, and aviators. Case reports for 3322 air and N2-O2 dives, resulting in 190 DCS events, were retrospectively analyzed and the outcomes were scored as (1) serious neurological, (2) cardiopulmonary, (3) mild neurological, (4) pain, (5) lymphatic or skin, and (6) constitutional or nonspecific manifestations. Following standard U.S. Navy medical definitions, the data were grouped into mild—Type I (manifestations 4–6)–and serious–Type II (manifestations 1–3). Additionally, we considered an alternative grouping of mild–Type A (manifestations 3–6)–and serious–Type B (manifestations 1 and 2). The current U.S. Navy guidance allows for a 2% probability of mild DCS and a 0.1% probability of serious DCS. We developed a hierarchical trinomial (3-state) probabilistic DCS model that simultaneously predicts the probability of mild and serious DCS given a dive exposure. Both the Type I/II and Type A/B discriminations of mild and serious DCS resulted in a highly significant (p << 0.01) improvement in trinomial model fit over the binomial (2-state) model. With the Type I/II definition, we found that the predicted probability of ‘mild’ DCS resulted in a longer allowable bottom time for the same 2% limit. However, for the 0.1% serious DCS limit, we found a vastly decreased allowable bottom dive time for all dive depths. If the Type A/B scoring was assigned to outcome severity, the no decompression limits (NDL) for air dives were still controlled by the acceptable serious DCS risk limit rather than the acceptable mild DCS risk limit. However, in this case, longer NDL limits were allowed than with the Type I/II scoring. The trinomial model mild and serious probabilities agree reasonably well with the current air NDL only with the Type A/B scoring and when 0.2% risk of serious DCS is allowed.


Journal of Applied Physiology | 2016

Assessment of the interaction of hyperbaric N2, CO2, and O2 on psychomotor performance in divers

John J. Freiberger; Bruce Derrick; Michael J. Natoli; Igor Akushevich; Eric A. Schinazi; Carl Parker; Bw Stolp; Peter B. Bennett; Richard D. Vann; Sophia Dunworth; Richard E. Moon

Diving narcosis results from the complex interaction of gases, activities, and environmental conditions. We hypothesized that these interactions could be separated into their component parts. Where previous studies have tested single cognitive tasks sequentially, we varied inspired partial pressures of CO2, N2, and O2 in immersed, exercising subjects while assessing multitasking performance with the Multi-Attribute Task Battery II (MATB-II) flight simulator. Cognitive performance was tested under 20 conditions of gas partial pressure and exercise in 42 male subjects meeting U.S. Navy age and fitness profiles. Inspired nitrogen (N2) and oxygen (O2) partial pressures were 0, 4.5, and 5.6 ATA and 0.21, 1.0, and 1.22 ATA, respectively, at rest and during 100-W immersed exercise with and without 0.075-ATA CO2 Linear regression modeled the association of gas partial pressure with task performance while controlling for exercise, hypercapnic ventilatory response, dive training, video game frequency, and age. Subjects served as their own controls. Impairment of memory, attention, and planning, but not motor tasks, was associated with N2 partial pressures >4.5 ATA. Sea level O2 at 0.925 ATA partially rescued motor and memory reaction time impaired by 0.075-ATA CO2; however, at hyperbaric pressures an unexpectedly strong interaction between CO2, N2, and exercise caused incapacitating narcosis with amnesia, which was augmented by O2 Perception of narcosis was not correlated with actual scores. The relative contributions of factors associated with diving narcosis will be useful to predict the effects of gas mixtures and exercise conditions on the cognitive performance of divers. The O2 effects are consistent with O2 narcosis or enhanced O2 toxicity.


Respiration Physiology | 1998

Effect of hypobaria on ventilatory and CO2 responses to short-term hypoxic exposure in cats

Cecil O. Borel; John Guy; Uli Barcik; Michael J. Natoli; Richard D. Vann

The effect of hypobaria on the ventilatory response to short-term hypoxia was studied by comparing the respiratory mechanical and inspired CO2 ventilatory responses to hypobaric hypoxia (438 mmHg) with normobaric hypoxia (11.8% FIO2). Fifteen spontaneously breathing, anesthetized cats were divided into three groups of five: time control, normobaric hypoxia and hypobaric hypoxia. Measurements of ventilation, gas exchange, and responses to intermittent CO2 rebreathing were collected over a 4 h period. PaO2 fell to 44.5 +/- 2.7 mmHg, PaCO2 fell to 24.8 +/- 0.9, and pH rose to 7.49 +/- 0.01 in both hypoxic groups. Tidal volume did not change with respect to time or condition, but frequency and ventilation were significantly increased in the hypobaric hypoxic group. The slope of the CO2 response was unchanged over time or by condition. These results suggest that hypobaric hypoxia may alter the pattern of breathing responses to hypoxia but not the CO2-response. If metabolic rate remained constant, these results could be explained by a difference in dead space between hypoxic conditions.


Journal of Applied Physiology | 2014

Effects of elevated oxygen and carbon dioxide partial pressures on respiratory function and cognitive performance

Matthew Gill; Michael J. Natoli; Charles Vacchiano; David B. MacLeod; Keita Ikeda; Michael Qin; Neal W. Pollock; Richard E. Moon; Carl F. Pieper; Richard D. Vann

Hyperoxia during diving has been suggested to exacerbate hypercapnic narcosis and promote unconsciousness. We tested this hypothesis in male volunteers (12 at rest, 10 at 75 W cycle ergometer exercise) breathing each of four gases in a hyperbaric chamber. Inspired Po2 (PiO2 ) was 0.21 and 1.3 atmospheres (atm) without or with an individual subjects maximum tolerable inspired CO2 (PiO2 = 0.055-0.085 atm). Measurements included end-tidal CO2 partial pressure (PetCO2 ), rating of perceived discomfort (RPD), expired minute ventilation (V̇e), and cognitive function assessed by auditory n-back test. The most prominent finding was, irrespective of PetCO2 , that minute ventilation was 8-9 l/min greater for rest or exercise with a PiO2 of 1.3 atm compared with 0.21 atm (P < 0.0001). For hyperoxic gases, PetCO2 was consistently less than for normoxic gases (P < 0.01). For hyperoxic hypercapnic gases, n-back scores were higher than for normoxic gases (P < 0.01), and RPD was lower for exercise but not rest (P < 0.02). Subjects completed 66 hyperoxic hypercapnic trials without incident, but five stopped prematurely because of serious symptoms (tunnel vision, vision loss, dizziness, panic, exhaustion, or near syncope) during 69 normoxic hypercapnic trials (P = 0.0582). Serious symptoms during hypercapnic trials occurred only during normoxia. We conclude serious symptoms with hyperoxic hypercapnia were absent because of decreased PetCO2 consequent to increased ventilation.


Journal of Applied Physiology | 2011

Sonic echocardiography: what does it mean when there are no bubbles in the left ventricle?

Hugh D. Van Liew; Richard D. Vann

the studies reported by Elliott and coworkers ([3][1]) in the Journal of Applied Physiology were prompted by criticisms of the way saline-contrast echocardiography results are interpreted ([4][2]–[7][3]). Our objective here is to rethink the interpretations in the light of our experience with

Collaboration


Dive into the Richard D. Vann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge