Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard D. Wood is active.

Publication


Featured researches published by Richard D. Wood.


Cell | 1995

Mammalian DNA nucleotide excision repair reconstituted with purified protein components

Abdelilah Aboussekhra; Maureen Biggerstaff; Mahmud K.K. Shivji; Juhani Vilpo; Vincent Moncollin; Vladimir N. Podust; Miroslava Protić; Ulrich Hübscher; Jean-Marc Egly; Richard D. Wood

Nucleotide excision repair is the principal way by which human cells remove UV damage from DNA. Human cell extracts were fractionated to locate active components, including xeroderma pigmentosum (XP) and ERCC factors. The incision reaction was then reconstituted with the purified proteins RPA, XPA, TFIIH (containing XPB and XPD), XPC, UV-DDB, XPG, partially purified ERCC1/XPF complex, and a factor designated IF7. UV-DDB (related to XPE protein) stimulated repair but was not essential. ERCC1- and XPF-correcting activity copurified with an ERCC1-binding polypeptide of 110 kDa that was absent in XP-F cell extract. Complete repair synthesis was achieved by combining these factors with DNA polymerase epsilon, RFC, PCNA, and DNA ligase I. The reconstituted core reaction requires about 30 polypeptides.


Cell | 1992

Proliferating cell nuclear antigen is required for DNA excision repair.

Mahmud K.K. Shivji; Mark K. Kenny; Richard D. Wood

Fractionation of extracts from human cell lines allows nucleotide excision repair of damaged DNA to be resolved into discrete incision and polymerization stages. Generation of incised intermediates depends on the XP-A protein, a polypeptide that recognizes sites of damaged DNA, and on the human single-stranded DNA-binding protein HSSB. The proliferating cell nuclear antigen (PCNA) is required for the DNA synthesis that converts the nicked intermediates to completed repair events. This need for PCNA implies that repair synthesis is carried out by DNA polymerase delta or epsilon. The ability to visualize repair intermediates in the absence of PCNA facilitates dissection of the multiprotein reaction that leads to incision of damaged DNA in a major pathway of cellular defense against mutagens.


The EMBO Journal | 1997

Mechanism of open complex and dual incision formation by human nucleotide excision repair factors

Elizabeth Evans; Jonathan G. Moggs; Jae R. Hwang; Jean-Marc Egly; Richard D. Wood

During nucleotide excision repair in human cells, a damaged DNA strand is cleaved by two endonucleases, XPG on the 3′ side of the lesion and ERCC1‐XPF on the 5′ side. These structure‐specific enzymes act at junctions between duplex and single‐stranded DNA. ATP‐dependent formation of an open DNA structure of ∼25 nt around the adduct precedes this dual incision. We investigated the mechanism of open complex formation and find that mutations in XPB or XPD, the DNA helicase subunits of the transcription and repair factor TFIIH, can completely prevent opening and dual incision in cell‐free extracts. A deficiency in XPC protein also prevents opening. The absence of RPA, XPA or XPG activities leads to an intermediate level of strand separation. In contrast, XPF or ERCC1‐defective extracts open normally and generate a 3′ incision, but fail to form the 5′ incision. This same repair defect was observed in extracts from human xeroderma pigmentosum cells with an alteration in the C‐terminal domain of XPB, suggesting that XPB has an additional role in facilitating 5′ incision by ERCC1‐XPF nuclease. These data support a mechanism in which TFIIH‐associated helicase activity and XPC protein catalyze initial formation of the key open intermediate, with full extension to the cleavage sites promoted by the other core nucleotide excision repair factors. Opening is followed by dual incision, with the 3′ cleavage made first.


Cell | 1988

Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts

Richard D. Wood; Peter Robins; Tomas Lindahl

Soluble extracts from human lymphoid cell lines that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers or psoralen adducts are described. Short patches of nucleotides are introduced by excision repair of damaged DNA in an ATP-dependent reaction. Extracts from xeroderma pigmentosum cell lines fail to act on damaged circular DNA, but are proficient in repair synthesis of ultraviolet-irradiated DNA containing incisions generated by Micrococcus luteus pyrimidine dimer-DNA glycosylase. Repair is defective in extracts from all xeroderma pigmentosum cell lines investigated, representing the genetic complementation groups A, B, C, D, H, and V. Mixing of cell extracts of group A and C origin leads to reconstitution of the DNA repair activity.


Nature Reviews Cancer | 2011

DNA polymerases and cancer

Sabine S. Lange; Kei Ichi Takata; Richard D. Wood

There are 15 different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells, and at least one DNA polymerase, Pol ζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes might be viable targets for therapeutic strategies.


Gene | 2000

Damage recognition in nucleotide excision repair of DNA

Dawn P. Batty; Richard D. Wood

Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted.


Current Biology | 1999

Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours

Beate Köberle; John R. W. Masters; John A. Hartley; Richard D. Wood

Metastatic cancer in adults usually has a fatal outcome. In contrast, advanced testicular germ cell tumours are cured in over 80% of patients using cisplatin-based combination chemotherapy [1]. An understanding of why these cells are sensitive to chemotherapeutic drugs is likely to have implications for the treatment of other types of cancer. Earlier measurements indicate that testis tumour cells are hypersensitive to cisplatin and have a low capacity to remove cisplatin-induced DNA damage from the genome [2] [3]. We have investigated the nucleotide excision repair (NER) capacity of extracts from the well-defined 833K and GCT27 human testis tumour cell lines. Both had a reduced ability to carry out the incision steps of NER in comparison with extracts from known repair-proficient cells. Immunoblotting revealed that the testis tumour cells had normal amounts of most NER proteins, but low levels of the xeroderma pigmentosum group A protein (XPA) and the ERCC1-XPF endonuclease complex. Addition of XPA specifically conferred full NER capacity on the testis tumour extracts. These results show that a low XPA level in the testis tumour cell lines is sufficient to explain their poor ability to remove cisplatin adducts from DNA and might be a major reason for the high cisplatin sensitivity of testis tumours. Targeted inhibition of XPA could sensitise other types of cells and tumours to cisplatin and broaden the usefulness of this chemotherapeutic agent.


Molecular Cell | 1999

Base excision repair of oxidative DNA damage activated by XPG protein.

Arne Klungland; Matthias Höss; Daniela Gunz; Angelos Constantinou; Stuart G. Clarkson; Paul W. Doetsch; Philip H. Bolton; Richard D. Wood; Tomas Lindahl

Oxidized pyrimidines in DNA are removed by a distinct base excision repair pathway initiated by the DNA glycosylase--AP lyase hNth1 in human cells. We have reconstituted this single-residue replacement pathway with recombinant proteins, including the AP endonuclease HAP1/APE, DNA polymerase beta, and DNA ligase III-XRCC1 heterodimer. With these proteins, the nucleotide excision repair enzyme XPG serves as a cofactor for the efficient function of hNth1. XPG protein promotes binding of hNth1 to damaged DNA. The stimulation of hNth1 activity is retained in XPG catalytic site mutants inactive in nucleotide excision repair. The data support the model that development of Cockayne syndrome in XP-G patients is related to inefficient excision of endogenous oxidative DNA damage.


Current Opinion in Genetics & Development | 1997

DNA Excision Repair Pathways

Tomas Lindahl; Peter Karran; Richard D. Wood

The major DNA excision repair pathways of base excision repair for endogenous DNA lesions and nucleotide excision repair for DNA damage inflicted by ultraviolet light have been reconstructed with purified mammalian proteins and details of these repair mechanisms are emerging. Similar data are becoming available with regard to mismatch repair for correction of replication errors. Deletion of individual DNA repair proteins in knockout mice provides information on the roles of such factors in vivo and recent three-dimensional structures of several repair enzymes explain their detailed modes of action.


Biochimie | 1999

DNA damage recognition during nucleotide excision repair in mammalian cells

Richard D. Wood

For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.

Collaboration


Dive into the Richard D. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Ichi Takata

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mineaki Seki

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Sabine S. Lange

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge