Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard E. Lenski is active.

Publication


Featured researches published by Richard E. Lenski.


The American Naturalist | 1991

Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations

Richard E. Lenski; Michael R. Rose; Suzanne Simpson; Scott C. Tadler

We assess the degree to which adaptation to a uniform environment among independently evolving asexual populations is associated with increasing divergence of those populations. In addition, we are concerned with the pattern of adaptation itself, particularly whether the rate of increase in mean fitness tends to decline with the number of generations of selection in a constant environment. The correspondence between the rate of increase in mean fitness and the within-population genetic variance of fitness, as expected from Fishers fundamental theorem, is also addressed. Twelve Escherichia coli populations were founded from a single clonal ancestor and allowed to evolve for 2,000 generations. Mean fitness increased by about 37%. However, the rate of increase in mean fitness was slower in later generations. There was no statistically significant within-population genetic variance of fitness, but there was significant between-population variance. Although the estimated genetic variation in fitness within populations was not statistically significant, it was consistent in magnitude with theoretical expectations. Similarly, the variance of mean fitness between populations was consistent with a model that incorporated stochastic variation in the timing and order of substitutions at a finite number of nonepistatic loci, coupled with substitutional delays and interference between substitutions arising from clonality. These results, taken as a whole, are consistent with theoretical expectations that do not invoke divergence due to multiple fitness peaks in a Wrightian evolutionary landscape.


Nature Reviews Genetics | 2003

Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation.

Santiago F. Elena; Richard E. Lenski

Microorganisms have been mutating and evolving on Earth for billions of years. Now, a field of research has developed around the idea of using microorganisms to study evolution in action. Controlled and replicated experiments are using viruses, bacteria and yeast to investigate how their genomes and phenotypic properties evolve over hundreds and even thousands of generations. Here, we examine the dynamics of evolutionary adaptation, the genetic bases of adaptation, tradeoffs and the environmental specificity of adaptation, the origin and evolutionary consequences of mutators, and the process of drift decay in very small populations.


Nature | 2009

Genome evolution and adaptation in a long-term experiment with Escherichia coli

Jeffrey E. Barrick; Dong Su Yu; Haeyoung Jeong; Tae Kwang Oh; Dominique Schneider; Richard E. Lenski; Jihyun F. Kim

The relationship between rates of genomic evolution and organismal adaptation remains uncertain, despite considerable interest. The feasibility of obtaining genome sequences from experimentally evolving populations offers the opportunity to investigate this relationship with new precision. Here we sequence genomes sampled through 40,000 generations from a laboratory population of Escherichia coli. Although adaptation decelerated sharply, genomic evolution was nearly constant for 20,000 generations. Such clock-like regularity is usually viewed as the signature of neutral evolution, but several lines of evidence indicate that almost all of these mutations were beneficial. This same population later evolved an elevated mutation rate and accumulated hundreds of additional mutations dominated by a neutral signature. Thus, the coupling between genomic and adaptive evolution is complex and can be counterintuitive even in a constant environment. In particular, beneficial substitutions were surprisingly uniform over time, whereas neutral substitutions were highly variable.


Nature | 1997

Evolution of high mutation rates in experimental populations of E. coli

Paul D. Sniegowski; Philip J. Gerrish; Richard E. Lenski

Most mutations are likely to be deleterious, and so the spontaneous mutation rate is generally held at a very low value. Nonetheless, evolutionary theory predicts that high mutation rates can evolve under certain circumstances. Empirical observations have previously been limited to short-term studies of the fates of mutator strains deliberately introduced into laboratory populations of Escherichia coli, and to the effects of intense selective events on mutator frequencies in E. coli. Here we report the rise of spontaneously originated mutators in populations of E. coli undergoing long-term adaptation to a new environment. Our results corroborate computer simulations of mutator evolution in adapting clonal populations, and may help to explain observations that associate high mutation rates with emerging pathogens and with certain cancers.


Genetica | 1998

The fate of competing beneficial mutations in an asexual population

Philip J. Gerrish; Richard E. Lenski

In sexual populations, beneficial mutations that occur in different lineages may be recombined into a single lineage. In asexual populations, however, clones that carry such alternative beneficial mutations compete with one another and, thereby, interfere with the expected progression of a given mutation to fixation. From theoretical exploration of such ‘clonal interference’, we have derived (1) a fixation probability for beneficial mutations, (2) an expected substitution rate, (3) an expected coefficient of selection for realized substitutions, (4) an expected rate of fitness increase, (5) the probability that a beneficial mutation transiently achieves polymorphic frequency (≥ 1%), and (6) the probability that a beneficial mutation transiently achieves majority status. Based on (2) and (3), we were able to estimate the beneficial mutation rate and the distribution of mutational effects from changes in mean fitness in an evolving E. coli population.


Nature | 2003

The evolutionary origin of complex features

Richard E. Lenski; Charles Ofria; Robert T. Pennock; Christoph Adami

A long-standing challenge to evolutionary theory has been whether it can explain the origin of complex organismal features. We examined this issue using digital organisms—computer programs that self-replicate, mutate, compete and evolve. Populations of digital organisms often evolved the ability to perform complex logic functions requiring the coordinated execution of many genomic instructions. Complex functions evolved by building on simpler functions that had evolved earlier, provided that these were also selectively favoured. However, no particular intermediate stage was essential for evolving complex functions. The first genotypes able to perform complex functions differed from their non-performing parents by only one or two mutations, but differed from the ancestor by many mutations that were also crucial to the new functions. In some cases, mutations that were deleterious when they appeared served as stepping-stones in the evolution of complex features. These findings show how complex functions can originate by random mutation and natural selection.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli

Zachary D. Blount; Christina Z. Borland; Richard E. Lenski

The role of historical contingency in evolution has been much debated, but rarely tested. Twelve initially identical populations of Escherichia coli were founded in 1988 to investigate this issue. They have since evolved in a glucose-limited medium that also contains citrate, which E. coli cannot use as a carbon source under oxic conditions. No population evolved the capacity to exploit citrate for >30,000 generations, although each population tested billions of mutations. A citrate-using (Cit+) variant finally evolved in one population by 31,500 generations, causing an increase in population size and diversity. The long-delayed and unique evolution of this function might indicate the involvement of some extremely rare mutation. Alternately, it may involve an ordinary mutation, but one whose physical occurrence or phenotypic expression is contingent on prior mutations in that population. We tested these hypotheses in experiments that “replayed” evolution from different points in that populations history. We observed no Cit+ mutants among 8.4 × 1012 ancestral cells, nor among 9 × 1012 cells from 60 clones sampled in the first 15,000 generations. However, we observed a significantly greater tendency for later clones to evolve Cit+, indicating that some potentiating mutation arose by 20,000 generations. This potentiating change increased the mutation rate to Cit+ but did not cause generalized hypermutability. Thus, the evolution of this phenotype was contingent on the particular history of that population. More generally, we suggest that historical contingency is especially important when it facilitates the evolution of key innovations that are not easily evolved by gradual, cumulative selection.


Nature | 2000

The population genetics of ecological specialization in evolving Escherichia coli populations

Vaughn S. Cooper; Richard E. Lenski

When organisms adapt genetically to one environment, they may lose fitness in other environments. Two distinct population genetic processes can produce ecological specialization—mutation accumulation and antagonistic pleiotropy. In mutation accumulation, mutations become fixed by genetic drift in genes that are not maintained by selection; adaptation to one environment and loss of adaptation to another are caused by different mutations. Antagonistic pleiotropy arises from trade-offs, such that the same mutations that are beneficial in one environment are detrimental in another. In general, it is difficult to distinguish between these processes. We analysed the decay of unused catabolic functions in 12 lines of Escherichia coli propagated on glucose for 20,000 generations. During that time, several lines evolved high mutation rates. If mutation accumulation is important, their unused functions should decay more than the other lines, but no significant difference was observed. Moreover, most catabolic losses occurred early in the experiment when beneficial mutations were being rapidly fixed, a pattern predicted by antagonistic pleiotropy. Thus, antagonistic pleiotropy appears more important than mutation accumulation for the decay of unused catabolic functions in these populations.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli

Tim F. Cooper; Daniel E. Rozen; Richard E. Lenski

Twelve populations of Escherichia coli, derived from a common ancestor, evolved in a glucose-limited medium for 20,000 generations. Here we use DNA expression arrays to examine whether gene-expression profiles in two populations evolved in parallel, which would indicate adaptation, and to gain insight into the mechanisms underlying their adaptation. We compared the expression profile of the ancestor to that of clones sampled from both populations after 20,000 generations. The expression of 59 genes had changed significantly in both populations. Remarkably, all 59 were changed in the same direction relative to the ancestor. Many of these genes were members of the cAMP-cAMP receptor protein (CRP) and guanosine tetraphosphate (ppGpp) regulons. Sequencing of several genes controlling the effectors of these regulons found a nonsynonymous mutation in spoT in one population. Moving this mutation into the ancestral background showed that it increased fitness and produced many of the expression changes manifest after 20,000 generations. The same mutation had no effect on fitness when introduced into the other evolved population, indicating that a mutation of similar effect was present already. Our study demonstrates the utility of expression arrays for addressing evolutionary issues including the quantitative measurement of parallel evolution in independent lineages and the identification of beneficial mutations.


Nature | 1997

Test of synergistic interactions among deleterious mutations in bacteria

Santiago F. Elena; Richard E. Lenski

Identifying the forces responsible for the origin and maintenance of sexuality remains one of the greatest unsolved problems in biology. The mutational deterministic hypothesis postulates that sex is an adaptation that allows deleterious mutations to be purged from the genome; it requires synergistic interactions, which means that two mutations would be more harmful together than expected from their separate effects,. We generated 225 genotypes of Escherichia coli carrying one, two or three successive mutations and measured their fitness relative to an unmutated competitor. The relationship between mutation number and average fitness is nearly log-linear. We also constructed 27 recombinant genotypes having pairs of mutations whose separate and combined effects on fitness were determined. Several pairs exhibit significant interactions for fitness, but they are antagonistic as often as they are synergistic. These results do not support the mutational deterministic hypothesis for the evolution of sex.

Collaboration


Dive into the Richard E. Lenski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Ofria

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Schneider

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jeffrey E. Barrick

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Schneider

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge