Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard E. Straub is active.

Publication


Featured researches published by Richard E. Straub.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.

Michael F. Egan; Terry E. Goldberg; Bhaskar Kolachana; Joseph H. Callicott; Chiara Mazzanti; Richard E. Straub; David Goldman; Daniel R. Weinberger

Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val108/158 Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11–16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.


American Journal of Human Genetics | 2003

Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia

Cathryn M. Lewis; Douglas F. Levinson; Lesley H. Wise; Lynn E. DeLisi; Richard E. Straub; Iiris Hovatta; Nigel Melville Williams; Sibylle G. Schwab; Ann E. Pulver; Stephen V. Faraone; Linda M. Brzustowicz; Charles A. Kaufmann; David L. Garver; Hugh Gurling; Eva Lindholm; Hilary Coon; Hans W. Moises; William Byerley; Sarah H. Shaw; Andrea Mesén; Robin Sherrington; F. Anthony O'Neill; Dermot Walsh; Kenneth S. Kendler; Jesper Ekelund; Tiina Paunio; Jouko Lönnqvist; Leena Peltonen; Michael Conlon O'Donovan; Michael John Owen

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bins average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia

I. Chumakov; Marta Blumenfeld; Oxana Guerassimenko; Laurent Cavarec; Marta Palicio; Hadi Abderrahim; Lydie Bougueleret; Caroline Barry; Hiroaki Tanaka; Philippe La Rosa; Anne Puech; Nadia Tahri; Annick Cohen-Akenine; Sylvain Delabrosse; Sébastien Lissarrague; Françoise-Pascaline Picard; Karelle Maurice; Laurent Essioux; Philippe Millasseau; Pascale Grel; Virginie Debailleul; Anne-Marie Simon; Dominique Caterina; Isabelle Dufaure; Kattayoun Malekzadeh; Maria Belova; Jian-Jian Luan; Michel Bouillot; Jean-Luc Sambucy; Gwenael Primas

A map of 191 single-nucleotide polymorphism (SNPs) was built across a 5-Mb segment from chromosome 13q34 that has been genetically linked to schizophrenia. DNA from 213 schizophrenic patients and 241 normal individuals from Canada were genotyped with this marker set. Two 1,400- and 65-kb regions contained markers associated with the disease. Two markers from the 65-kb region were also found to be associated to schizophrenia in a Russian sample. Two overlapping genes G72 and G30 transcribed in brain were experimentally annotated in this 65-kb region. Transfection experiments point to the existence of a 153-aa protein coded by the G72 gene. This protein is rapidly evolving in primates, is localized to endoplasmic reticulum/Golgi in transfected cells, is able to form multimers and specifically binds to carbohydrates. Yeast two-hybrid experiments with the G72 protein identified the enzyme d-amino acid oxidase (DAAO) as an interacting partner. DAAO is expressed in human brain where it oxidizes d-serine, a potent activator of N-methyl-D-aspartate type glutamate receptor. The interaction between G72 and DAAO was confirmed in vitro and resulted in activation of DAAO. Four SNP markers from DAAO were found to be associated with schizophrenia in the Canadian samples. Logistic regression revealed genetic interaction between associated SNPs in vicinity of two genes. The association of both DAAO and a new gene G72 from 13q34 with schizophrenia together with activation of DAAO activity by a G72 protein product points to the involvement of this N-methyl-d-aspartate receptor regulation pathway in schizophrenia.


American Journal of Human Genetics | 2002

Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia.

Richard E. Straub; Yuxin Jiang; Charles J. MacLean; Yunlong Ma; Bradley T. Webb; Maxim V. Myakishev; Carole Harris-Kerr; Brandon Wormley; Hannah Sadek; Bharat Kadambi; Anthony J. Cesare; Avi Gibberman; Xu Wang; F. Anthony O'Neill; Dermot Walsh; Kenneth S. Kendler

Prior evidence has supported the existence of multiple susceptibility genes for schizophrenia. Multipoint linkage analysis of the 270 Irish high-density pedigrees that we have studied, as well as results from several other samples, suggest that at least one such gene is located in region 6p24-21. In the present study, family-based association analysis of 36 simple sequence-length-polymorphism markers and of 17 SNP markers implicated two regions, separated by approximately 7 Mb. The first region, and the focus of this report, is 6p22.3. In this region, single-nucleotide polymorphisms within the 140-kb gene DTNBP1 (dystrobrevin-binding protein 1, or dysbindin) are strongly associated with schizophrenia. Uncorrected, empirical P values produced by the program TRANSMIT were significant (P<.01) for a number of individual SNP markers, and most remained significant when the data were restricted to include only one affected offspring per nuclear family per extended pedigree; multiple three-marker haplotypes were highly significant (P=.008-.0001) under the restricted conditions. The pattern of linkage disequilibrium is consistent with the presence of more than one susceptibility allele, but this important issue is unresolved. The number of markers tested in the adjacent genes, all of which are negative, is not sufficient to rule out the possibility that the dysbindin gene is not the actual susceptibility gene, but this possibility appears to be very unlikely. We conclude that further investigation of dysbindin is warranted.


The Journal of Neuroscience | 2004

The Brain-Derived Neurotrophic Factor val66met Polymorphism and Variation in Human Cortical Morphology

Lukas Pezawas; Beth A. Verchinski; Venkata S. Mattay; Joseph H. Callicott; Bhaskar Kolachana; Richard E. Straub; Michael F. Egan; Andreas Meyer-Lindenberg; Daniel R. Weinberger

A variation in the BDNF gene (val66met) affects the function of BDNF in neurons, predicts variation in human memory, and is associated with several neurological and psychiatric disorders. Here, we show that, in magnetic resonance imaging scans of a large sample of normal individuals, this polymorphism affects the anatomy of the hippocampus and prefrontal cortex, identifying a genetic mechanism of variation in brain morphology related to learning and memory.


Molecular Psychiatry | 2004

Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia

Ryota Hashimoto; Richard E. Straub; Cynthia Shannon Weickert; Thomas M. Hyde; Joel E. Kleinman; Daniel R. Weinberger

Genetic linkage and association have implicated neuregulin-1 (NRG-1) as a schizophrenia susceptibility gene. We measured mRNA expression levels of the three major isoforms of NRG-1 (ie type I, type II, and type III) in the postmortem dorsolateral prefrontal cortex (DLPFC) from matched patients and controls using real-time quantitative RT-PCR. Expression levels of three internal controls—GAPDH, cyclophilin, and β-actin—were unchanged in schizophrenia, and there were no changes in the absolute levels of the NRG-1 isoforms. However, type I expression normalized by GAPDH levels was significantly increased in schizophrenia DLPFC (by 23%) and positively correlated with antipsychotic medication dosage. Type II/type I and type II/type III ratios were significantly decreased (18 and 23% respectively). There was no effect on the NRG-1 mRNA levels of genotype at two SNPs previously associated with schizophrenia, suggesting that these alleles are not functionally responsible for abnormal NRG-1 expression patterns in patients. Subtle abnormalities in the expression patterns of NRG-1 mRNA isoforms in DLPFC may be associated with schizophrenia.


Molecular Psychiatry | 2007

Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression.

Richard E. Straub; Barbara K. Lipska; Michael F. Egan; Terry E. Goldberg; Joseph H. Callicott; M B Mayhew; Radhakrishna Vakkalanka; Bhaskar Kolachana; Joel E. Kleinman; D.R. Weinberger

Cortical GABAergic dysfunction has been implicated as a key component of the pathophysiology of schizophrenia and decreased expression of the gamma-aminobutyric acid (GABA) synthetic enzyme glutamic acid decarboxylase 67 (GAD67), encoded by GAD1, is found in schizophrenic post-mortem brain. We report evidence of distorted transmission of single-nucleotide polymorphism (SNP) alleles in two independent schizophrenia family-based samples. In both samples, allelic association was dependent on the gender of the affected offspring, and in the Clinical Brain Disorders Branch/National Institute of Mental Health (CBDB/NIMH) sample it was also dependent on catechol-O-methyltransferase (COMT) Val158Met genotype. Quantitative transmission disequilibrium test analyses revealed that variation in GAD1 influenced multiple domains of cognition, including declarative memory, attention and working memory. A 5′ flanking SNP affecting cognition in the families was also associated in unrelated healthy individuals with inefficient BOLD functional magnetic resonance imaging activation of dorsal prefrontal cortex (PFC) during a working memory task, a physiologic phenotype associated with schizophrenia and altered cortical inhibition. In addition, a SNP in the 5′ untranslated (and predicted promoter) region that also influenced cognition was associated with decreased expression of GAD1 mRNA in the PFC of schizophrenic brain. Finally, we observed evidence of statistical epistasis between two SNPs in COMT and SNPs in GAD1, suggesting a potential biological synergism leading to increased risk. These coincident results implicate GAD1 in the etiology of schizophrenia and suggest that the mechanism involves altered cortical GABA inhibitory activity, perhaps modulated by dopaminergic function.


American Journal of Medical Genetics | 1996

A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

Michael Gill; Homero Vallada; David Collier; Pak Sham; Peter Alan Holmans; Robin M. Murray; Peter McGuffin; Shinichiro Nanko; Michael John Owen; David E. Housman; Haig H. Kazazian; Gerald Nestadt; Ann E. Pulver; Richard E. Straub; Charles J. MacLean; Dermot Walsh; Kenneth S. Kendler; Lynn E. DeLisi; M Polymeropoulos; Hilary Coon; William Byerley; R. Lofthouse; Elliot S. Gershon; L Golden; T.J. Crow; Robert Freedman; Claudine Laurent; S BodeauPean; Thierry d'Amato; Maurice Jay

Several groups have reported weak evidence for linkage between schizophrenia and genetic markers located on chromosome 22q using the lod score method of analysis. However these findings involved different genetic markers and methods of analysis, and so were not directly comparable. To resolve this issue we have performed a combined analysis of genotypic data from the marker D22S278 in multiply affected schizophrenic families derived from 11 independent research groups worldwide. This marker was chosen because it showed maximum evidence for linkage in three independent datasets (Vallada et al., Am J Med Genet 60:139-146, 1995; Polymeropoulos et al., Neuropsychiatr Genet 54:93-99, 1994; Lasseter et al., Am J Med Genet, 60:172-173, 1995. Using the affected sib-pair method as implemented by the program ESPA, the combined dataset showed 252 alleles shared compared with 188 alleles not share (chi-square 9.31, 1df, P = 0.001) where parental genotype data was completely known. When sib-pairs for whom parental data was assigned according to probability were included the number of alleles shared was 514.1 compared with 437.8 not shared (chi-square 6.12, 1df, P = 0.006). Similar results were obtained when a likelihood ratio method for sib-pair analysis was used. These results indicate that may be a susceptibility locus for schizophrenia at 22q12.


Journal of Clinical Investigation | 2007

Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition

Andreas Meyer-Lindenberg; Richard E. Straub; Barbara K. Lipska; Beth A. Verchinski; Terry E. Goldberg; Joseph H. Callicott; Michael F. Egan; Stephen S. Huffaker; Venkata S. Mattay; Bhaskar Kolachana; Joel E. Kleinman; Daniel R. Weinberger

Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32), encoded by PPP1R1B, is a pivotal integrator of information in dopaminoceptive neurons, regulating the response to neuroleptics, psychotomimetics, and drugs of abuse, and affecting striatal function and plasticity. Despite extensive preclinical work, there are almost no data on DARPP-32 function in humans. Here, we identify, through resequencing in 298 chromosomes, a frequent PPP1R1B haplotype predicting mRNA expression of PPP1R1B isoforms in postmortem human brain. This haplotype was associated with enhanced performance on several cognitive tests that depend on frontostriatal function. Multimodal imaging of healthy subjects revealed an impact of the haplotype on neostriatal volume, activation, and the functional connectivity of the prefrontal cortex. The haplotype was associated with the risk for schizophrenia in 1 family-based association analysis. Our convergent results identify a prefrontal-neostriatal system affected by variation in PPP1R1B and suggest that DARPP-32 plays a pivotal role in cognitive function and possibly in the pathogenesis of schizophrenia.


American Journal of Human Genetics | 2000

Multicenter Linkage Study of Schizophrenia Candidate Regions on Chromosomes 5q, 6q, 10p, and 13q: Schizophrenia Linkage Collaborative Group III *

Douglas F. Levinson; Peter Alan Holmans; Richard E. Straub; Michael John Owen; Dieter B. Wildenauer; Pablo V. Gejman; Ann E. Pulver; Claudine Laurent; Kenneth S. Kendler; Dermot Walsh; Nadine Norton; Nigel Williams; Sibylle G. Schwab; Bernard Lerer; Bryan J. Mowry; Alan R. Sanders; Jean Louis Blouin; Jean-François Deleuze; Jacques Mallet

Schizophrenia candidate regions 33-51 cM in length on chromosomes 5q, 6q, 10p, and 13q were investigated for genetic linkage with mapped markers with an average spacing of 5.64 cM. We studied 734 informative multiplex pedigrees (824 independent affected sibling pairs [ASPs], or 1,003 ASPs when all possible pairs are counted), which were collected in eight centers. Cases with diagnoses of schizophrenia or schizoaffective disorder (DSM-IIIR criteria) were considered affected (n=1,937). Data were analyzed with multipoint methods, including nonparametric linkage (NPL), ASP analysis using the possible-triangle method, and logistic-regression analysis of identity-by-descent (IBD) sharing in ASPs with sample as a covariate, in a test for intersample heterogeneity and for linkage with allowance for intersample heterogeneity. The data most supportive for linkage to schizophrenia were from chromosome 6q; logistic-regression analysis of linkage allowing for intersample heterogeneity produced an empirical P value <.0002 with, or P=.0004 without, inclusion of the sample that produced the first positive report in this region; the maximum NPL score in this region was 2.47 (P=.0046), the maximum LOD score (MLS) from ASP analysis was 3.10 (empirical P=.0036), and there was significant evidence for intersample heterogeneity (empirical P=.0038). More-modest support for linkage was observed for chromosome 10p, with logistic-regression analysis of linkage producing an empirical P=. 045 and with significant evidence for intersample heterogeneity (empirical P=.0096).

Collaboration


Dive into the Richard E. Straub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth S. Kendler

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Dermot Walsh

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph H. Callicott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Hyde

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhaskar Kolachana

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge