Richard Eskridge
Marshall Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Eskridge.
Journal of Physics D | 2005
Adam Martin; Richard Eskridge
A single-stage pulsed inductive plasma accelerator was modelled as an inductive mass-driver, with the plasma treated as a rigid slug that acts as the armature. We derive a set of coupled dynamic-circuit equations, with dimensionless coefficients. The functional form of the mutual inductance profile, M(z), was calculated using the magnetic field solver QuickField; an exponential form for M(z) was found to be accurate for a variety of coil-slug geometries. A parametric study of the solutions to the equations was performed in order to determine the conditions that yield high coupling efficiency. High inductance, multi-turn drive-coils yield the highest efficiency for a single-stage device. Using inductive recapture, coupling efficiencies in excess of 90% are possible; without it, the peak efficiency is much lower, η 55%. We conclude that inductive recapture will be required in order to achieve the high efficiency required of an electric thruster. The efficiency scales favourably with increasing power, although this does not preclude operation at lower power with acceptable efficiency. The presence of an imbedded bias flux in the slug improves the dynamic efficiency for devices without inductive recapture, but offers little improvement when used with inductive recapture.
39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit | 2003
Syri J. Koelfgen; Clark W. Hawk; Richard Eskridge; James Smith; Adam Martin
There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isps in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MWs. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.
SPACE TECH.& APPLIC.INT.FORUM-STAIF 2006: 10th Conf Thermophys Applic Microgravity; 23rd Symp Space Nucl Pwr & Propulsion; 4th Conf Human/Robotic Tech & Nat'l Vision for Space Explor.; 4th Symp Space Coloniz.; 3rd Symp on New Frontiers & Future Concepts | 2006
Richard Eskridge; Peter Fimognari; Adam Martin; Michael H. Lee
The design and construction of a plasmoid thruster prototype is described. This thruster operates by expelling pre‐detached plasmoids at high velocities. These plasmoids are field reversed configuration plasmas which are formed by reversing a magnetic flux frozen in an ionized gas inside a theta‐pinch coil. The pinch coil is a unique multi‐turn, multi‐lead design chosen for optimization of inductance and field uniformity. The coil is wound around an alumina ceramic core and the operation of the thruster is completely electrode‐less. The design of this thruster follows a series of experiments at NASA MSFC based on a single turn theta‐pinch coil called the “Plasmoid Thruster Experiment.” Key issues are addressed which affect the efficiency of the PT‐1. Testing of this device will begin in FY06 at the NASA MSFC Propulsion Research Center.
40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit | 2004
Syri J. Koelfgen; Richard Eskridge; Peter Fimognari; Clark W. Hawk; Michael Lee; Adam Martin
The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and subsequently ejecting them at high velocity. An overview of PTX is described in a companion paper. The shape and magnetic field structure of the translating plasmoids will be measured with of an array of inductive magnetic field probes. Six sets of two B-dot probes (for a total of twelve probes) have been constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes were calibrated with a Helmholtz coil, driven alternately by a high-voltage pulser or a signal generator. The probes are wound on a G-10 form, and have an average (calibrated) NA of 9.37 x 10(exp -5) square meters, where N is the number of turns and A is cross-sectional area. The frequency response of the probes was measured over the range from 1 kHz to 10 MHZ. The electron number density n(sub e), electron temperature T(sub e) and velocity v will be determined from measurements taken with a quadruple Langmuir probe, situated in the exhaust chamber. Three of the four probes on the quadruple probe sample the current-voltage characteristic, and from this yield measurements of T(sub e) and n(sub e). The fourth probe provides a measurement of plasma flow velocity. A 6-inch long alumina rod, hollowed with four holes to house the probe wires, is being used to construct the quadruple probe. A variety of propellants will be used, including hydrogen, nitrogen and argon. From the measurements of the plasmoid mass, density, temperature, and velocity, the basic propulsion characteristics of PTX will be evaluated.
SPACE TECH.& APPLIC.INT.FORUM-STAIF 2006: 10th Conf Thermophys Applic Microgravity; 23rd Symp Space Nucl Pwr & Propulsion; 4th Conf Human/Robotic Tech & Nat'l Vision for Space Explor.; 4th Symp Space Coloniz.; 3rd Symp on New Frontiers & Future Concepts | 2006
Adam Martin; Richard Eskridge; Peter J. Fimognari; Michael H. Lee
Thermo‐nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo‐nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic‐field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher‐plate, as in the classic Orion concept. However with this conce...
IEEE Transactions on Plasma Science | 2015
Ashley K. Hallock; Adam Martin; Kurt A. Polzin; Adam Kimberlin; Richard Eskridge
Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20°, 38°, and 60°, were quantified for 500-J/pulse operation by direct measurement using a hanging pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38° model producing the highest impulse bits at roughly 1-mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively pulsed thruster operation, permitted testing of the 38° thruster at a repetition rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. For similar conditions, the average thrust measured during repetitive-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate, suggesting that a greater impulse bit per pulse was produced when operating in the repetitive-pulse mode.
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit | 2002
Y. C. Francis Thio; Jason Cassibry; Richard Eskridge; James Smith; S. T. Wu; Stephen L. Rodgers
Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.
Atomization and Sprays | 1997
Douglas A. Feikema; Richard Eskridge; John J. Hurt
Archive | 2003
Adam Martin; Richard Eskridge; Michael Lee; Peter Fimohnsti; Syri J. Koelfgen
Archive | 2007
Richard Eskridge; Adam Martin