Richard Essery
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Essery.
Journal of Geophysical Research | 2009
Nick Rutter; Richard Essery; John W. Pomeroy; Nuria Altimir; Kostas Andreadis; Ian T. Baker; Alan G. Barr; Paul Bartlett; Aaron Boone; Huiping Deng; H. Douville; Emanuel Dutra; Kelly Elder; C. R. Ellis; Xia Feng; Alexander Gelfan; Angus Goodbody; Yeugeniy M. Gusev; David Gustafsson; Rob Hellström; Yukiko Hirabayashi; Tomoyoshi Hirota; Tobias Jonas; Victor Koren; Anna Kuragina; Dennis P. Lettenmaier; Wei-Ping Li; Charlie Luce; E. Martin; Olga N. Nasonova
Thirty-three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up t ...
Journal of Climate | 2002
Christopher M. Taylor; Eric F. Lambin; Nathalie Stephenne; Richard Harding; Richard Essery
A number of general circulation model (GCM) experiments have shown that changes in vegetation in the Sahel can cause substantial reductions in rainfall. In some studies, the climate sensitivity is large enough to trigger drought of the severity observed since the late 1960s. The extent and intensity of vegetation changes are crucial in determining the magnitude of the atmospheric response in the models. However, there is no accurate historical record of regional vegetation changes extending back to before the drought began. One important driver of vegetation change is land use practice. In this paper the hypothesis that recent changes in land use have been large enough to cause the observed drought is tested. Results from a detailed land use model are used to generate realistic maps of vegetation changes linked to land use. The land use model suggests that cropland coverage in the Sahel has risen from 5% to 14% in the 35 yr prior to 1996. It is estimated that this process of agricultural extensification, coupled with deforestation and other land use changes, translates to a conversion of 4% of the land from tree cover to bare soil over this period. The model predicts further changes in the composition of the land surface by 2015 based on changes in human population (rural and urban), livestock population, rainfall, cereals imports, and farming systems. The impact of land use change on Sahelian climate is assessed using a GCM, forced by the estimates of land use in 1961, 1996, and 2015. Relative to 1961 conditions, simulated rainfall decreases by 4.6% (1996) and 8.7% (2015). The decreases are closely linked to a later onset of the wet season core during July. Once the wet season is well developed, however, the sensitivity of total rainfall to the land surface is greatly reduced, and depends on the sensitivity of synoptic disturbances to the land surface. The results suggest that while the climate of the region is rather sensitive to small changes in albedo and leaf area index, recent historical land use changes are not large enough to have been the principal cause of the Sahel drought. However, the climatic impacts of land use change in the region are likely to increase rapidly in the coming years.
Annals of Glaciology | 2004
Pierre Etchevers; E. Martin; Ross Brown; Charles Fierz; Yves Lejeune; Eric Bazile; Aaron Boone; Yongjiu Dai; Richard Essery; Alberto Fernandez; Yeugeniy M. Gusev; Rachel E. Jordan; Victor Koren; Eva Kowalczyk; N. Olga Nasonova; R. David Pyles; Adam Schlosser; Andrey B. Shmakin; Tatiana G. Smirnova; Ulrich Strasser; Diana Verseghy; Takeshi Yamazaki; Zong-Liang Yang
Abstract Many snow models have been developed for various applications such as hydrology, global atmospheric circulation models and avalanche forecasting. The degree of complexity of these models is highly variable, ranging from simple index methods to multi-layer models that simulate snow-cover stratigraphy and texture. In the framework of the Snow Model Intercomparison Project (SnowMIP), 23 models were compared using observed meteorological parameters from two mountainous alpine sites. The analysis here focuses on validation of snow energy-budget simulations. Albedo and snow surface temperature observations allow identification of the more realistic simulations and quantification of errors for two components of the energy budget: the net short- and longwave radiation. In particular, the different albedo parameterizations are evaluated for different snowpack states (in winter and spring). Analysis of results during the melting period allows an investigation of the different ways of partitioning the energy fluxes and reveals the complex feedbacks which occur when simulating the snow energy budget. Particular attention is paid to the impact of model complexity on the energy-budget components. The model complexity has a major role for the net longwave radiation calculation, whereas the albedo parameterization is the most significant factor explaining the accuracy of the net shortwave radiation simulation.
Journal of Climate | 1996
James L. Foster; Glen E. Liston; Randy Koster; Richard Essery; Helga Behr; Lydia Dümenil; Diana Verseghy; Starly Thompson; David Pollard; Judah Cohen
Abstract Confirmation of the ability of general circulation models (GCMs) to accurately represent snow cover and snow mass distributions is vital for climate studies. There must be a high degree of confidence that what is being predicted by the models is reliable, since realistic results cannot be assured unless they are tested against results from observed data or other available datasets. In this study, snow output from seven GCMs and passive-microwave snow data derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are intercompared. National Oceanic and Atmospheric Administration satellite data are used as the standard of reference for snow extent observations and the U.S. Air Force snow depth climatology is used as the standard for snow mass. The reliability of the SMMR snow data needs to be verified, as well, because currently this is the only available dataset that allows for yearly and monthly variations in snow depth. [The GCMs employed in this investigation are the United Ki...
Journal of Hydrometeorology | 2004
Jean Emmanuel Sicart; John W. P Omeroy; Richard Essery; Janet P. Hardy; Danny Marks
This study investigates the dependence of net radiation at snow surfaces under forest canopies on the overlying canopy density. The daily sum of positive values of net radiation is used as an index of the snowmelt rate. Canopy cover is represented in terms of shortwave transmissivity and sky-view factor. The cases studied are a spruce forest in the Wolf Creek basin, Yukon Territory, Canada, and a pine forest near Fraser, Colorado. Of particular interest are the atmospheric conditions that favor an offset between shortwave energy attenuation and longwave irradiance enhancement by the canopy, such that net radiation does not decrease with increasing forest density. Such an offset is favored in dry climates and at high altitudes, where atmospheric emissivities are low, and in early spring when snow albedos are high and solar elevations are low. For low snow albedos, a steady decrease in snowmelt energy with increasing canopy cover is found, up to a forest density close to the actual densities of mature spruce forests. Snowmelt rates for high albedos are either insensitive or increase with increasing canopy cover. At both sites, foliage area indices close to 2 are associated with a minimum in net radiation, independent of snow albedo or cloud cover. However, these results are more uncertain for open forests because solar heating of trees may invalidate the longwave assumptions, increasing the longwave irradiance.
Journal of Hydrometeorology | 2003
John W. Pomeroy; B. Toth; R. J. Granger; N. R. Hedstrom; Richard Essery
Surface energetics and snow ablation were examined during the 1999 snowmelt season in a mountain subarctic tundra valley in the Yukon Territory of Canada. Considerations of melt energetics at small scales were made with respect to the frame of reference of the sloping surface snowpack. During relatively warm and sunny conditions early in melt, snow ablation rates were dramatically higher on the south-facing slope and strongly reduced on the north-facing slope, compared to the valley bottom. Negative spatial covariances developed between maximum snow accumulation and ablation rate during early and middle melt, with the highest ablation rates occurring on slopes with the shallowest snowpacks. Atmospheric conditions were sufficiently well mixed across the valley that reference level air temperatures and humidity among the slopes were close to levels of measurement accuracy. However, under high levels of April insolation, notable differences in incoming solar radiation to varying slopes/aspects caused relatively larger differences in net radiation and surface temperature, which were progressively magnified as shrubs and soil became exposed during snow ablation. Under cloudier conditions later in melt, the south-facing snowpack had mostly ablated, vegetation was exposed at all sites, and ablation rates were virtually identical between the valley bottom and north-facing slope. Driven primarily by initial differences in insolation and snow accumulation, surface energy fluxes changed sign and magnitude over space, not only with insolation, vegetation cover, slope, and aspect, but also with the snow cover state and ground/ vegetation exposure. Melt rate was, hence, controlled by both incoming energy and evolving and initial snow states. For these reasons, and because of the slope-based frame of reference necessary to precisely define the snowmelt energy balance, simple aggregate representations of melt in subarctic mountain environments that are based on averaged energy flux, snow state, and flat-plane conceptions may require substantive corrections that should be explored in modeling studies.
Proceedings of the IEEE | 2010
Helmut Rott; Simon H. Yueh; Donald W. Cline; Claude R. Duguay; Richard Essery; Christian Haas; Florence Hélière; Michael Kern; Giovanni Macelloni; Eirik Malnes; Thomas Nagler; Jouni Pulliainen; Helge Rebhan; Alan Thompson
Snow is a critical component of the global water cycle and climate system, and a major source of water supply in many parts of the world. There is a lack of spatially distributed information on the accumulation of snow on land surfaces, glaciers, lake ice, and sea ice. Satellite missions for systematic and global snow observations will be essential to improve the representation of the cryosphere in climate models and to advance the knowledge and prediction of the water cycle variability and changes that depend on snow and ice resources. This paper describes the scientific drivers and technical approach of the proposed Cold Regions Hydrology High-Resolution Observatory (CoReH2O) satellite mission for snow and cold land processes. The sensor is a synthetic aperture radar operating at 17.2 and 9.6 GHz, VV and VH polarizations. The dual-frequency and dual-polarization design enables the decomposition of the scattering signal for retrieving snow mass and other physical properties of snow and ice.
Journal of Hydrometeorology | 2004
Richard Essery; John W. Pomeroy
Abstract A finescale model of blowing snow is used to simulate the characteristics of snow cover in a low-Arctic catchment with moderate topography and partial shrub cover. The influence of changing shrub characteristics is investigated by performing a sequence of simulations with varying shrub heights and coverage. Increasing shrub height gives an increase in snow depth within the shrub-covered areas, up to a limit determined by the supply of falling and blowing snow, but increasing shrub coverage gives a decrease in snow depths within shrubs as the supply of blowing snow imported from open areas is reduced. A simulation of snow redistribution over the existing topography without any shrub cover gives much greater accumulations of snow on slopes in the lee of the prevailing wind than on windward slopes; in contrast, shrubs are able to trap snow on both lee and windward slopes. A spatially aggregated, or tiled, model is developed in which snow is relocated by wind transport from sparsely vegetated tiles t...
Journal of Climate | 2003
Richard Essery; John W. Pomeroy; J. Parviainen; Pascal Storck
Improved representations of snow interception by coniferous forest canopies and sublimation of intercepted snow are implemented in a land surface model. Driven with meteorological observations from forested sites in Canada, the United States, and Sweden, the modified model is found to give reduced sublimation, better simulations of snow loads on and below canopies, and improved predictions of snowmelt runoff. When coupled to an atmospheric model in a GCM, however, drying and warming of the air because of the reduced sublimation provides a feedback that limits the impact of the new canopy snow model on the predicted sublimation. There is little impact on the average annual snowmelt runoff in the GCM, but runoff is delayed and peak runoff increased by the introduction of the canopy snow model.
AMBIO: A Journal of the Human Environment | 2011
Terry V. Callaghan; Margareta Johansson; Ross Brown; Pavel Ya. Groisman; Niklas Labba; Vladimir F. Radionov; Raymond S. Bradley; Sylvie Blangy; Olga N. Bulygina; Torben R. Christensen; Jonathan E. Colman; Richard Essery; Bruce C. Forbes; Mads C. Forchhammer; Vladimir N. Golubev; Richard E. Honrath; Glenn P. Juday; Anna V. Meshcherskaya; Gareth K. Phoenix; John W. Pomeroy; Arja Rautio; David A. Robinson; Niels Martin Schmidt; Mark C. Serreze; Vladimir P Shevchenko; Alexander I. Shiklomanov; Andrey B. Shmakin; Peter Sköld; Matthew Sturm; Ming-ko Woo
Snow cover plays a major role in the climate, hydrological and ecological systems of the Arctic and other regions through its influence on the surface energy balance (e.g. reflectivity), water balance (e.g. water storage and release), thermal regimes (e.g. insulation), vegetation and trace gas fluxes. Feedbacks to the climate system have global consequences. The livelihoods and well-being of Arctic residents and many services for the wider population depend on snow conditions so changes have important consequences. Already, changing snow conditions, particularly reduced summer soil moisture, winter thaw events and rain-on-snow conditions have negatively affected commercial forestry, reindeer herding, some wild animal populations and vegetation. Reductions in snow cover are also adversely impacting indigenous peoples’ access to traditional foods with negative impacts on human health and well-being. However, there are likely to be some benefits from a changing Arctic snow regime such as more even run-off from melting snow that favours hydropower operations.