Richard F. Meyer
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard F. Meyer.
Emerging Infectious Diseases | 2002
Daniel B. Jernigan; Pratima L. Raghunathan; Beth P. Bell; Ross J. Brechner; Eddy A. Bresnitz; Jay C. Butler; Marty Cetron; Mitch Cohen; Timothy J. Doyle; Marc Fischer; Carolyn M. Greene; Kevin S. Griffith; Jeannette Guarner; James L. Hadler; James A. Hayslett; Richard F. Meyer; Lyle R. Petersen; Michael R. Phillips; Robert W. Pinner; Tanja Popovic; Conrad P. Quinn; Jennita Reefhuis; Dori B. Reissman; Nancy E. Rosenstein; Anne Schuchat; Wun-Ju Shieh; Larry Siegal; David L. Swerdlow; Fred C. Tenover; Marc S. Traeger
In October 2001, the first inhalational anthrax case in the United States since 1976 was identified in a media company worker in Florida. A national investigation was initiated to identify additional cases and determine possible exposures to Bacillus anthracis. Surveillance was enhanced through health-care facilities, laboratories, and other means to identify cases, which were defined as clinically compatible illness with laboratory-confirmed B. anthracis infection. From October 4 to November 20, 2001, 22 cases of anthrax (11 inhalational, 11 cutaneous) were identified; 5 of the inhalational cases were fatal. Twenty (91%) case-patients were either mail handlers or were exposed to worksites where contaminated mail was processed or received. B. anthracis isolates from four powder-containing envelopes, 17 specimens from patients, and 106 environmental samples were indistinguishable by molecular subtyping. Illness and death occurred not only at targeted worksites, but also along the path of mail and in other settings. Continued vigilance for cases is needed among health-care providers and members of the public health and law enforcement communities.
Journal of Microbiological Methods | 2003
George M. Blackstone; Jessica L. Nordstrom; Michael C.L. Vickery; Michael D. Bowen; Richard F. Meyer; Angelo DePaola
A real time polymerase chain reaction (PCR) assay was developed and evaluated to detect the presence of the thermostable direct hemolysin gene (tdh), a current marker of pathogenicity in Vibrio parahaemolyticus. The real time PCR fluorogenic probe and primer set was tested against a panel of numerous strains from 13 different bacterial species. Only V. parahaemolyticus strains possessing the tdh gene generated a fluorescent signal, and no cross-reaction was observed with tdh negative Vibrio or non-Vibrio spp. The assay detected a single colony forming unit (CFU) per reaction of a pure culture template. This sensitivity was achieved when the same template amount per reaction was tested in the presence of 2.5 microl of a tdh negative oyster:APW enrichment (oyster homogenate enriched in alkaline peptone water overnight at 35 degrees C). This real time technique was used to test 131 oyster:APW enrichments from an environmental survey of Alabama oysters collected between March 1999 and September 2000. The results were compared to those previously obtained using a streak plate procedure for culture isolation from the oyster:APW enrichment combined with use of a non-radioactive DNA probe for detection of the tdh gene. Real time PCR detected tdh in 61 samples, whereas the streak plate/probe method detected tdh in 15 samples. Only 24 h was required for detection of pathogenic V. parahaemolyticus in oyster:APW enrichments by real time PCR, whereas the streak plate/probe method required 3 days and was more resource intensive. This study demonstrated that real time PCR is a rapid and reliable technique for detecting V. parahaemolyticus possessing the tdh gene in pure cultures and in oyster enrichments.
Emerging Infectious Diseases | 2002
Alex R. Hoffmaster; Richard F. Meyer; Michael P. Bowen; Chung K. Marston; Robbin S. Weyant; Kathy Thurman; Sharon Messenger; Erin E. Minor; Jonas M. Winchell; Max V. Rasmussen; Bruce R. Newton; J. Todd Parker; William E. Morrill; Nancy McKinney; Gwen A. Barnett; James J. Sejvar; John A. Jernigan; Bradley A. Perkins; Tanja Popovic
To the Editor: During the 2001 anthrax outbreak, we evaluated and validated a highly sensitive and specific three-target (two plasmid and one chromosomally located target) 5´ nuclease assay (real-time polymerase chain reaction [PCR]) for detection and identification of Bacillus anthracis. This PCR assay was successfully used to rapidly test hundreds of suspect isolates as well as screen environmental samples for the presence of B. anthracis throughout the 2001 anthrax outbreak. For the first time in an outbreak setting, a PCR assay was used to detect B. anthracis directly from clinical specimens, consequently becoming a part of the laboratory confirmation of anthrax. In this letter, we describe the evaluation of this assay on a diverse panel of bacterial isolates including isolates obtained throughout the outbreak. A supplement, which includes data on the use of this assay on environmental and clinical specimens, is online (available from http://www.cdc.gov/ncidod/EID/vol8no10/02-0393sup.htm).
Emerging Infectious Diseases | 2004
Shannon L. Emery; Dean D. Erdman; Michael D. Bowen; Bruce R. Newton; Jonas M. Winchell; Richard F. Meyer; Suxiang Tong; Byron T. Cook; Brian P. Holloway; Karen A. McCaustland; Paul A. Rota; Bettina Bankamp; Luis Lowe; T. G. Ksiazek; William J. Bellini; Larry J. Anderson
A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection.
Clinical Infectious Diseases | 2007
James J. Walsh; Nicki T. Pesik; Conrad P. Quinn; Veronica Urdaneta; Clare A. Dykewicz; Anne E. Boyer; Jeannette Guarner; Patricia P. Wilkins; Kim J. Norville; John R. Barr; Sherif R. Zaki; Jean B. Patel; Sarah Reagan; James L. Pirkle; Tracee A. Treadwell; Nancy Rosenstein Messonnier; Lisa D. Rotz; Richard F. Meyer; David S. Stephens
This report describes the first case of naturally acquired inhalation anthrax in the United States since 1976. The patients clinical course included adjunctive treatment with human anthrax immunoglobulin. Clinical correlation of serologic assays for the lethal factor component of lethal toxin and anti-protective antigen immunoglobulin G are also presented.
Emerging Infectious Diseases | 2002
Marc S. Traeger; Steven Wiersma; Nancy E. Rosenstein; Jean M. Malecki; Colin W. Shepard; Pratima L. Raghunathan; Segaran P. Pillai; Tanja Popovic; Conrad P. Quinn; Richard F. Meyer; Sharif R. Zaki; Savita Kumar; Sherrie M. Bruce; James J. Sejvar; Peter M. Dull; Bruce C. Tierney; Joshua D. Jones; Bradley A. Perkins
On October 4, 2001, we confirmed the first bioterrorism-related anthrax case identified in the United States in a resident of Palm Beach County, Florida. Epidemiologic investigation indicated that exposure occurred at the workplace through intentionally contaminated mail. One additional case of inhalational anthrax was identified from the index patient’s workplace. Among 1,076 nasal cultures performed to assess exposure, Bacillus anthracis was isolated from a co-worker later confirmed as being infected, as well as from an asymptomatic mail-handler in the same workplace. Environmental cultures for B. anthracis showed contamination at the workplace and six county postal facilities. Environmental and nasal swab cultures were useful epidemiologic tools that helped direct the investigation towards the infection source and transmission vehicle. We identified 1,114 persons at risk and offered antimicrobial prophylaxis.
Journal of Food Protection | 2004
G. E. Kaufman; George M. Blackstone; Michael C.L. Vickery; A. K. Bej; J. Bowers; Michael D. Bowen; Richard F. Meyer; Angelo DePaola
This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26 degrees C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P < 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P < 0.05; and oyster: r = 0.99, P < 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P < 0.05) but reduced correlation (r = -0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus-specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h from sampling time.
Journal of Hospital Infection | 1998
J. Chaparro; Jeanette Vega; William Terry; J.L Vera; B. Barra; Richard F. Meyer; Clarence J. Peters; Ali S. Khan; Thomas G. Ksiazek
Person-to-person transmission of Andes hantavirus among healthcare workers was reported in Argentina for the first time in 1996. To determine whether such transmission of the virus occurred during a 1997 outbreak of hantavirus pulmonary syndrome (HPS) in southern Chile due to Andes virus, we conducted a serological and epidemiological study in the Coyhaique Regional Hospital, where the majority of HPS patients were admitted. Workers in every department of the hospital were evaluated for immunoglobulin G (IgG) and IgM hantavirus antibodies using the enzyme-linked immunosorbent assay (ELISA). A standardized questionnaire was used to determine the type and extent of exposure to HPS patients, as well as other potential risk factors and previous febrile respiratory illnesses requiring hospitalization. Less than half (44%) reported always using gloves when touching patients or their secretions; respiratory protection was not used. Of the 319 participants (87.9% of those eligible), 12 (3.7%) had IgG antibodies. This finding is consistent with the antibody prevalence in the community in which the participants lived. Of the 12 positive healthcare workers, six reported contact with HPS patients. A similar exposure was found in those who tested negative [6/140 (4%) compared to 6/179 (3%), P = 0.66]. There was no significant difference in the types of hospital activities performed or the number of hospitalizations for febrile respiratory illnesses between antibody-positive and antibody-negative individuals. These data suggest that there was no person-to-person transmission among healthcare workers during a recent outbreak of HPS in Southern Chile in 1997, despite the inconsistent use of any precautions against transmission.
Applied and Environmental Microbiology | 2008
Leslie A. Dauphin; Bruce R. Newton; Max V. Rasmussen; Richard F. Meyer; Michael D. Bowen
ABSTRACT The use of Bacillus anthracis as a biological weapon in 2001 heightened awareness of the need for validated methods for the inactivation of B. anthracis spores. This study determined the gamma irradiation dose for inactivating virulent B. anthracis spores in suspension and its effects on real-time PCR and antigen detection assays. Strains representing eight genetic groups of B. anthracis were exposed to gamma radiation, and it was found that subjecting spores at a concentration of 107 CFU/ml to a dose of 2.5 × 106 rads resulted in a 6-log-unit reduction of spore viability. TaqMan real-time PCR analysis of untreated versus irradiated Ames strain (K1694) spores showed that treatment significantly enhanced the detection of B. anthracis chromosomal DNA targets but had no significant effect on the ability to detect targets on the pXO1 and pXO2 plasmids of B. anthracis. When analyzed by an enzyme-linked immunosorbent assay (ELISA), irradiation affected the detection of B. anthracis spores in a direct ELISA but had no effect on the limit of detection in a sandwich ELISA. The results of this study showed that gamma irradiation-inactivated spores can be tested by real-time PCR or sandwich ELISA without decreasing the sensitivity of either type of assay. Furthermore, the results suggest that clinical and public health laboratories which test specimens for B. anthracis could potentially incorporate gamma irradiation into sample processing protocols without compromising the sensitivity of the B. anthracis assays.
American Journal of Public Health | 2007
Joshua G. Schier; Manish M. Patel; Martin G. Belson; Amee Patel; Michael D. Schwartz; Nicole Fitzpatrick; Dan Drociuk; Scott Deitchman; Richard F. Meyer; Toby Litovitz; William A. Watson; Carol Rubin; Max Kiefer
OBJECTIVES In October 2003, a package containing ricin and a note threatening to poison water supplies was discovered in a South Carolina postal facility, becoming the first potential chemical terrorism event involving ricin in the United States. We examined the comprehensive public health investigation that followed and discuss the lessons learned from it. METHODS An investigation consisting primarily of environmental sampling for ricin contamination, performance of health assessments on affected personnel, and local, regional, and national surveillance for ricin-associated illness. RESULTS Laboratory analysis of 75 environmental sampling specimens revealed no ricin contamination. Health assessments of 36 affected employees were completed. Local surveillance initially identified 3 suspected cases, and national surveillance identified 399 outliers during the 2-week period after the incident. No confirmed cases of ricin-associated illness were identified. CONCLUSIONS A multifaceted and multidisciplinary approach is required for an effective public health response to a chemical threat such as ricin. The results of all of the described activities were used to determine that the facility was safe to reopen and that no public health threat existed.