Richard G. J. Bellerby
Norwegian Institute for Water Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard G. J. Bellerby.
Nature | 2007
Ulf Riebesell; Kai G. Schulz; Richard G. J. Bellerby; Mona Botros; Peter Fritsche; Michael Meyerhöfer; C. Neill; G. Nondal; Andreas Oschlies; Julia Wohlers; Eckart Zöllner
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 μatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today’s ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.
Nature | 2012
Victor Smetacek; Christine Klaas; Volker Strass; Philipp Assmy; Marina Montresor; Boris Cisewski; Nicolas Savoye; Adrian Webb; Francesco d’Ovidio; Jesús M. Arrieta; Ulrich Bathmann; Richard G. J. Bellerby; Gry Mine Berg; Peter Croot; S. Gonzalez; Joachim Henjes; Gerhard J. Herndl; Linn Hoffmann; Harry Leach; Martin Losch; Matthew M. Mills; Craig Neill; Ilka Peeken; Rüdiger Röttgers; Oliver Sachs; Eberhard Sauter; Maike Schmidt; Jill Nicola Schwarz; Anja Terbrüggen; Dieter Wolf-Gladrow
Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence—although each with important uncertainties—lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.
Nature | 2008
T. F. Thingstad; Richard G. J. Bellerby; Gunnar Bratbak; Knut Yngve Børsheim; Jorun K. Egge; Mikal Heldal; Aud Larsen; C. Neill; Jens C. Nejstgaard; Svein Norland; Ruth-Anne Sandaa; Evy Foss Skjoldal; Tsuneo Tanaka; Runar Thyrhaug; Birte Töpper
Predicting the ocean’s role in the global carbon cycle requires an understanding of the stoichiometric coupling between carbon and growth-limiting elements in biogeochemical processes. A recent addition to such knowledge is that the carbon/nitrogen ratio of inorganic consumption and release of dissolved organic matter may increase in a high-CO2 world. This will, however, yield a negative feedback on atmospheric CO2 only if the extra organic material escapes mineralization within the photic zone. Here we show, in the context of an Arctic pelagic ecosystem, how the fate and effects of added degradable organic carbon depend critically on the state of the microbial food web. When bacterial growth rate was limited by mineral nutrients, extra organic carbon accumulated in the system. When bacteria were limited by organic carbon, however, addition of labile dissolved organic carbon reduced phytoplankton biomass and activity and also the rate at which total organic carbon accumulated, explained as the result of stimulated bacterial competition for mineral nutrients. This counterintuitive ‘more organic carbon gives less organic carbon’ effect was particularly pronounced in diatom-dominated systems where the carbon/mineral nutrient ratio in phytoplankton production was high. Our results highlight how descriptions of present and future states of the oceanic carbon cycle require detailed understanding of the stoichiometric coupling between carbon and growth-limiting mineral nutrients in both autotrophic and heterotrophic processes.
Science | 2008
Ulf Riebesell; Richard G. J. Bellerby; Anja Engel; Victoria J. Fabry; David A. Hutchins; Thorsten B.H. Reusch; Kai G. Schulz; François M. M. Morel
Iglesias-Rodriguez et al. (Research Articles, 18 April 2008, p. 336) reported that the coccolithophore Emiliania huxleyi doubles its organic matter production and calcification in response to high carbon dioxide partial pressures, contrary to previous laboratory and field studies. We argue that shortcomings in their experimental protocol compromise the interpretation of their data and the resulting conclusions.
Hydrobiologia | 2009
Tobias Tamelander; Caroline Kivimäe; Richard G. J. Bellerby; Paul E. Renaud; Svein Kristiansen
Stable isotope values are useful for elucidating C and N cycling and pathways in marine and aquatic ecosystems. Variations in the base-line isotope values, the δ13C and δ15N values of phytoplankton, put constraints on their usefulness as tracers for trophic interactions and sources of organic matter in food web studies, however. We investigated the C and N stable isotope values of suspended particulate organic matter in relation to uptake of total dissolved inorganic carbon and nitrate, chlorophyll a concentration and the isotope composition of dissolved inorganic carbon in an Arctic marine environment (northern Barents Sea) in order to improve the understanding of factors regulating the variation in stable isotope values at the base of the marine food web. The stable isotope values of water-column suspended particulate organic carbon (δ13Corg) and nitrogen (δ15Norg) varied from −28.3‰ to −20.2‰ and 2.9‰ to 8.3‰, respectively, among stations sampled during spring and summer. δ13Corg was not linearly related to carbon uptake, but the values were on average 3‰ higher at stations in a late-bloom stage, characterised by higher carbon uptake compared to early-bloom stations. Accumulation of phytoplankton biomass had a strong impact on δ13Corg values, reflected in a positive relationship between δ13Corg and chlorophyll a concentration. δ15Norg was positively related to the percentage of nitrate taken up from initial (winter) concentrations. These results indicate a strong relationship between bloom progression and isotope composition of particulate organic C and N pools. Synoptic data on stable isotope compositions, nutrient concentrations and phytoplankton biomass therefore improve the interpretation of isotope values when these are compared across pools with different turnover times, such as phytoplankton and consumers or suspended and sedimentary organic matter.
Geochemistry Geophysics Geosystems | 2006
Marius Y. Meland; Eystein Jansen; Henry Elderfield; Trond Dokken; Are Olsen; Richard G. J. Bellerby
In core top samples in the Nordic Seas, Mg/Ca ratios of N. pachyderma (sin.) are generally consistent with previous high-latitude calibration data but do not reflect the modern calcification temperature gradient from 2°C in the northwest to 8°C in the southeast. This is because Mg/Ca ratios in foraminiferal shells from the central Nordic Seas are ∼0.4 mmol/mol higher than expected from calibrations of Nurnberg (1995) and Elderfield and Ganssen (2000). The enhanced Mg/Ca ratios are observed in an area with low sedimentation rates (<∼5 cm/kyr). Possible factors that may cause this include bioturbation, Holocene variability in old core tops, dissolution, pore water chemistry, occurrence of volcanic ash, and other natural variability. The enhanced foraminiferal Mg/Ca ratios in areas of the Nordic Seas and the northern North Atlantic may also be linked with secondary factors related to the presence of fresher and colder water masses, possibly combined with pore water chemistry in low-sedimentation areas differing from high-sedimentation areas.
Analytica Chimica Acta | 2013
Victoire M.C. Rérolle; Cedric F.A. Floquet; Andy J.K. Harris; Matthew C. Mowlem; Richard G. J. Bellerby; Eric P. Achterberg
High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ships underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used instead of the current USB mini spectrophotometer. Artefacts due to the polychromatic light source and inhomogeneity in the absorption cell are shown to have a negligible impact on the data quality. The next step in the miniaturization of the sensor will be the incorporation of a photodiode as detector to replace the spectrophotometer.
Geophysical Research Letters | 2006
Michael D. DeGrandpre; Arne Körtzinger; Uwe Send; Douglas W.R. Wallace; Richard G. J. Bellerby
The Labrador Sea is an important area of deep water formation and is hypothesized to be a significant sink for atmospheric CO2 to the deep ocean. Here we examine the dynamics of the CO2 system in the Labrador Sea using time-series data obtained from instrumentation deployed on a mooring near the former Ocean Weather Station Bravo. A 1-D model is used to determine the air-sea CO2 uptake and penetration of the CO2 into intermediate waters. The results support that mixed-layer pCO2 remained undersaturated throughout most of the year, ranging from 220 μatm in mid-summer to 375 μatm in the late spring. Net community production in the summer offset the increase in pCO2 expected from heating and air-sea uptake. In the fall and winter, cooling counterbalanced a predicted increase in pCO2 from vertical convection and air-sea uptake. The predicted annual mean air to sea flux was 4.6 mol m−2 yr−1 resulting in an annual uptake of 0.011 ± 0.005 Pg C from the atmosphere within the convection region. In 2001, approximately half of the atmospheric CO2 penetrated below 500 m due to deep convection.
Global Biogeochemical Cycles | 2011
Emil Jeansson; Are Olsen; Tor Eldevik; Ingunn Skjelvan; Abdirahman M Omar; S. K. Lauvset; Jan Even Øie Nilsen; Richard G. J. Bellerby; Truls Johannessen; Eva Falck
[1] A carbon budget for the Nordic Seas is derived by combining recent inorganic carbon data from the CARINA database with relevant volume transports. Values of organic carbon in the Nordic Seas’ water masses, the amount of carbon input from river runoff, and the removal through sediment burial are taken from the literature. The largest source of carbon to the Nordic Seas is the Atlantic Water that enters the area across the Greenland-Scotland Ridge; this is in particular true for the anthropogenic CO2. The dense overflows into the deep North Atlantic are the main sinks of carbon from the Nordic Seas. The budget show that presently 12.3 ± 1.4 Gt C yr −1 is transported into the Nordic Seas and that 12.5 ± 0.9 Gt C yr −1 is transported out, resulting in a net advective carbon transport out of the Nordic Seas of 0.17 ± 0.06 Gt C yr −1 . Taking storage into account, this implies a net air-to-sea CO2 transfer of 0.19 ± 0.06 Gt C yr −1 into the Nordic Seas. The horizontal transport of carbon through the Nordic Seas is thus approximately two orders of magnitude larger than the CO2 uptake from the atmosphere. No difference in CO2 uptake was found between 2002 and the preindustrial period, but the net advective export of carbon from the Nordic Seas is smaller at present due to the accumulation of anthropogenic CO2.
Frontiers in Marine Science | 2017
Kai G. Schulz; Lennart T. Bach; Richard G. J. Bellerby; Rafael Bermúdez; Jan Büdenbender; Tim Boxhammer; Jan Czerny; Anja Engel; Andrea Ludwig; Michael Meyerhöfer; Aud Larsen; Allanah Paul; Michael Sswat; Ulf Riebesell
Anthropogenic emissions of carbon dioxide (CO2) and the ongoing accumulation in the surface ocean together with concomitantly decreasing pH and calcium carbonate saturation states have the potential to impact phytoplankton community composition and therefore biogeochemical element cycling on a global scale. Here we report on a recent mesocosm CO2 perturbation study (Raunefjorden, Norway), with a focus on organic matter and phytoplankton dynamics. Cell numbers of three phytoplankton groups were particularly affected by increasing levels of seawater CO2 throughout the entire experiment, with the cyanobacterium Synechococcus and picoeukaryotes (prasinophytes) profiting, and the coccolithophore Emiliania huxleyi (prymnesiophyte) being negatively impacted. Combining these results with other phytoplankton community CO2 experiments into a data-set of global coverage suggests that, whenever CO2 effects are found, prymnesiophyte (especially coccolithophore) abundances are negatively affected, while the opposite holds true for small picoeukaryotes belonging to the class of prasinophytes, or the division of chlorophytes in general. Future reductions in calcium carbonate-producing coccolithophores, providing ballast which accelerates the sinking of particulate organic matter, together with increases in picoeukaryotes, an important component of the microbial loop in the euphotic zone, have the potential to impact marine export production, with feedbacks to Earths climate system.