Richard G. Payne
Rice University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard G. Payne.
Biomaterials | 1996
Michael J. Yaszemski; Richard G. Payne; Wilson C. Hayes; Robert Langer; Antonios G. Mikos
Bone defects occur in a wide variety of clinical situations, and their reconstruction to provide mechanical integrity to the skeleton is a necessary step in the patients rehabilitation. The current gold standard for bone reconstruction, the autogenous bone graft, works well in many circumstances. However, autograft reconstruction, along with the available alternatives of allogenous bone graft or poly(methylmethacrylate) bone cement, do not solve all instances of bone deficiency. Novel materials, cellular transplantation and bioactive molecule delivery are being explored alone and in various combinations to address the problem of bone deficiency. The goal of these strategies is to exploit the bodys natural ability to repair injured bone with new bone tissue, and to then remodel that new bone in response to the local stresses it experiences. In general, the strategies discussed in this paper attempt to provide the reconstructed region with appropriate initial mechanical properties, encourage new bone to form in the region, and then gradually degrade to allow the new bone to remodel and assume the mechanical support function. Several of the concepts presented below are already finding clinical applications in early patient trials.
Biomaterials | 1996
Michael J. Yaszemski; Richard G. Payne; Wilson C. Hayes; Robert Langer; Antonios G. Mikos
We investigated the in vitro degradation of a novel degradable polymeric composite material being developed to function as a temporary replacement for trabecular bone. This material is based on a mixture of poly(propylene fumarate) cross-linked by N-vinyl-pyrrolidone and includes sodium chloride and beta-tricalcium phosphate. Using an in vitro test in simulated body fluids, the compressive strengths and compressive moduli of two composite materials increased with degradation time and remained above the minimum values acceptable for trabecular bone substitutes. A compressive strength of 21.3 (+/- 0.4) MPa and a compressive modulus of 696 (+/- 53) MPa were measured after twelve weeks for a composite material with initial strength of 18.0 (+/- 4.6) MPa and initial modulus of 113 (+/- 40) MPa. This unexpected phenomenon may prove to be useful for orthopaedic applications.
Tissue Engineering | 1995
Michael J. Yaszemski; Richard G. Payne; Wilson C. Hayes; Robert Langer; Thomas B. Aufdemorte; Antonios G. Mikos
Trabecular bone deficiency causes a dilemma at surgery in a variety of clinical situations, including trauma, tumor resection, and reconstruction. A synthetic material to replace trabecular bone would be biocompatible, provide temporary mechanical strength to the reconstructed region, and serve as a scaffold upon which new bone could grow (i.e., osteoconduction). In addition, it should serve as a carrier for osteoinductive biomolecules, degrade into nontoxic materials that the body can excrete via normal metabolic pathways, and allow the new bone to remodel along lines of local stress. A particulate filled composite based on an unsaturated linear polyester was designed as a candidate material for this application. The components are mixed with a monomer that cross links the double bonds of the unsaturated polyester. Degradation occurs via hydrolytic degradation of the backbone polymers ester linkages. This strategy of prepolymer synthesis via condensation polymerization in the laboratory followed by cross linking the unsaturated prepolymer via radical polymerization at surgery offers design flexibility. The radical polymerization allows curing during surgery to facilitate reconstruction of various shaped defects. The laboratory synthesis of the prepolymer allows alterations of its composition and physical properties to effect desired properties in the resulting composite. This study investigates the effect of several composite material formulations on the in vitro mechanical properties and the associated in vivo histologic characteristics of the resulting material. The prepolymer molecular weight, presence of a leachable salt, and amount of cross linking monomer had strong effects on the resulting strength and modulus of the composite. These strengths were on the order of 5 MPa, a magnitude appropriate for consideration of the material as a temporary trabecular bone substitute. The in vivo studies in a rat proximal tibia model demonstrated progressive growth of new bone against the receding surface of the degrading material, and ingrowth of new bone trabeculae into the interior of the degrading specimen. The specimen was also well integrated with the surrounding bone, with no internal fibrosis. There was an absence of a foreign body inflammatory response to the presence of this material over a 5-week time span. This material may thus be an attractive candidate for temporary replacement of trabecular bone, facilitating both osteoconduction and osteoinduction.
Biomaterials | 2002
Richard G. Payne; Michael J. Yaszemski; Alan W. Yasko; Antonios G. Mikos
This study investigated the temporary encapsulation of rat marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Cells were encapsulated in uncrosslinked gelatin microparticles of average diameter of 630 microm containing approximately 53 cells. Gelatin microparticles were crosslinked to shell thicknesses of approximately 75 microm via exposure to 1 mM dithiobis(succinimidylpropionate) (DSP) solution for 15 min or 5 mm DSP solution for 5 min for the production of microparticles dispersing approximately 60 min after placement into a physiologic fluid at 37 degrees C. Formed microparticles were placed into culture wells at a cell seeding density of 5.3 x 10(4) cells/cm2 and, following the degradation and/or dissolution of gelatin, the cells were cultured in the presence of osteogenic supplements for 28 days. Samples were taken at specified time points and analyzed by a DNA assay for cell number and a 3H-thymidine incorporation assay for proliferative potential. Samples were also obtained and analyzed at several time points by alkaline phosphatase, osteocalcin, and mineralization assays for early and late phenotypic expression markers of osteoblastic differentiation. The measurements from the different assays for encapsulated cells (EC) in uncrosslinked and crosslinked gelatin microparticles were normalized with the cell numbers from the DNA assay and compared with those for nonencapsulated control cells. The results demonstrated that the marrow stromal cells survived the encapsulation procedure in uncrosslinked gelatin microparticles and also retained their proliferative potential and osteoblastic phenotype over a 28 day period, although at a slightly lower level than the nonencapsulated cells. The results further showed that the marrow stromal cells survived the encapsulation in crosslinked gelatin microparticles prepared via exposure to 5mm DSP for 5 min and also retained their proliferative potential and osteoblastic phenotype over a 28 day period, but at a slightly lower level than the EC in uncrosslinked gelatin microparticles. In contrast, exposure to 1 mM DSP for 15 min led to severely limited cell viability and phenotypic expression probably due to the increased crosslinking time. These results suggest that temporary encapsulation of cells in gelatin microparticles may protect cells from short-term environmental effects such as those associated with the crosslinking of an injectable polymeric carrier for bone tissue engineering.
Journal of Biomechanical Engineering-transactions of The Asme | 2000
Blaise D. Porter; Jacob B. Oldham; S.-L. He; Mark E. Zobitz; Richard G. Payne; Kai Nan An; Bradford L. Currier; Antonios G. Mikos; Michael J. Yaszemski
Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.
Journal of Biomaterials Science-polymer Edition | 1997
Susan J. Peter; Michael J. Yaszemski; Laura J. Suggs; Richard G. Payne; Robert Langer; Wilson C. Hayes; Marilyn R. Unroe; Lawrence B. Alemany; Paul S. Engel; Antonios G. Mikos
A partially saturated linear polyester based on poly(propylene fumarate) (PPF) was synthesized for potential application in filling skeletal defects. The synthesis was carried out according to a two-step reaction scheme. Propylene glycol and fumaryl chloride were first combined to form an intermediate fumaric diester. The intermediate was then subjected to a transesterification to form the PPF-based polymer. This method allowed for production of a polymer with a number average molecular weight up to 1500 and a polydispersity index of 2.8 and below. The polymeric backbone structure was investigated through the use of FTIR and NMR. Kinetic studies of the transesterification allowed mapping of the molecular weight increase with reaction time. The final product was also characterized by thermal and solubility analysis.
Biomaterials | 2002
Richard G. Payne; Joseph S. McGonigle; Michael J. Yaszemski; Alan W. Yasko; Antonios G. Mikos
The effect of temporary encapsulation of rat marrow stromal osteoblasts in crosslinked gelatin microparticles on cell viability and proliferation was investigated in this study for microparticles placed on a crosslinking poly(propylene fumarate) (PPF) composite over a 7 day time period. Encapsulated cells were seeded on crosslinking PPF composites at times up to 10 min following initiation of the crosslinking reaction, and also on fully crosslinked PPF composites and tissue culture polystyrene controls, with a cell seeding density of 5.3 x 10(4) cells/cm2. The crosslinked PPF composite exhibited an average gel point of 10.3 min and an average maximum crosslinking temperature of 47.5 degrees C. Cell viability and proliferation were assessed by DNA and 3H-thymidine assays and the results were compared with those for nonencapsulated cells. The results showed that the addition time of cells to a crosslinking PPF composite had a large effect on cell viability and proliferation for both encapsulated and nonencapsulated cells with more surviving cells added at later time points. Most importantly, the temporary encapsulation of cells significantly enhanced cell viability at earlier time points. The data indicate that the presence of gelatin microparticles does not affect the crosslinking of a PPF composite. They further suggest that the temporary encapsulation of cells in crosslinked gelatin microparticles may preserve the viability of cells contained in an actively crosslinking PPF composite used as an injectable polymeric scaffold serving also as a carrier for osteogenic cell populations.
Biomaterials | 2002
Richard G. Payne; Joseph S. McGonigle; Michael J. Yaszemski; Alan W. Yasko; Antonios G. Mikos
This study investigated the effect of temporary encapsulation of rat marrow stromal osteoblasts in crosslinked gelatin microparticles on long-term cell proliferation and phenotypic expression for microparticles placed on crosslinking poly(propylene fumarate) (PPF) composites using N-vinyl pyrollidinone (N-VP) as a crosslinking agent over a 28 day time period. Encapsulated cells (ECs) were seeded on actively crosslinking PPF composites 6 min after initiation of the crosslinking reaction, and also on fully crosslinked PPF composites and tissue culture polystyrene controls, with a cell seeding density of 5.3 x 10(4) cells/cm2. Composites prepared with three PPF:N-VP ratios were examined: 1:0.5, 1:0.1, and 1:0.05. Samples were taken at specified time points and analyzed by DNA, 3H-thymidine, alkaline phosphatase, osteocalcin, and calcium assays, and the measurements were compared with those for nonencapsulated cells (NCs). The results showed that encapsulated marrow stromal cells exhibited much higher viability, proliferation, and phenotypic expression when placed on crosslinking PPF composites than NCs. The assay results for ECs on crosslinking PPF composites were also similar to those on fully crosslinked PPF composites. The data further demonstrated that the PPF:N-VP ratio had no effect on the viability, proliferation, or phenotypic expression of the ECs. These results suggest that cells encapsulated in crosslinked gelatin microparticles may be part of an injectable, in situ crosslinkable, biodegradable polymeric composite for bone tissue engineering applications.
Biotechnology and Bioengineering | 2000
Susan L. Ishaug; Richard G. Payne; Michael J. Yaszemski; Thomas B. Aufdemorte; Rena Bizios; Antonios G. Mikos
We investigated the migration of rat calvaria osteoblast populations on poly(α‐hydroxy ester) films for up to 14 days to determine effects of substrate composition and culture conditions on the migratory characteristics of osteoblasts. Initial osteoblast culture conditions included cell colonies formed by seeding a high (84,000 cells/cm2) or low (42,000 cells/cm2) density of isolated osteoblasts on the polymer films, and bone tissue cultures formed by plating bone chips directly on the substrates. High density osteoblast colonies cultured and allowed to migrate and proliferate radially on 85:15 poly(DL‐lactic‐co‐glycolic acid) (PLGA) films, 75:25 PLGA films, and tissue culture polystyrene controls demonstrated that the copolymer ratio in the polymer films did not affect the rate of increase in substrate surface area (or culture area) covered by the growing cell colony. However, the rate of increase in culture area was dependent on the initial osteoblast seeding density. Initial cell colonies formed with a lower osteoblast seeding density on 75:25 PLGA resulted in a lower rate of increase in culture area, specifically 4.9 ± 0.3 mm2/day, versus 14.1 ± 0.7 mm2/day for colonies seeded with a higher density of cells on the same polymer films. The proliferation rate for osteoblasts in the high and low density seeded osteoblast colonies did not differ, whereas the proliferation rate for the osteoblasts arising from the bone chips was lower than either of these isolated cell colonies. Confocal and light microscopy revealed that the osteoblast migration occurred as a monolayer of individual osteoblasts and not a calcified tissue front. These results demonstrated that cell seeding conditions strongly affect the rates of osteoblast migration and proliferation on biodegradable poly(α‐hydroxy esters).
MRS Proceedings | 1993
Michael J. Yaszemski; Antonios G. Mikos; Richard G. Payne; Wilson C. Hayes
Our laboratory has been developing a particulate composite material as a temporary replacement for trabecular bone. The material is degradable in physiologic fluids, and uses starting materials that the body can metabolize and excrete. This study investigates the influence of the molecular weight of one component, a linear polyester, on the mechanical strength of the composite material. The compressive strength and modulus increase from “low” to “medium” molecular weight, but do not increase further from “medium” to “high” molecular weight. Low, medium, and high are relative to the highest molecular weight attainable with the current reaction scheme, which is a number average molecular weight (M n ) of 2,038 and a weight average molecular weight (M w ) of 11,916.
Collaboration
Dive into the Richard G. Payne's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs