Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Gabriel is active.

Publication


Featured researches published by Richard Gabriel.


Nature Biotechnology | 2011

An unbiased genome-wide analysis of zinc-finger nuclease specificity

Richard Gabriel; Angelo Lombardo; Anne Arens; Jeffrey C. Miller; Pietro Genovese; Christine Kaeppel; Ali Nowrouzi; Cynthia C. Bartholomae; Jianbin Wang; Geoffrey Friedman; Michael C. Holmes; Philip D. Gregory; Hanno Glimm; Manfred Schmidt; Luigi Naldini; Christof von Kalle

Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.


Molecular Therapy | 2013

TALEN-based gene correction for epidermolysis bullosa.

Mark J. Osborn; Colby G. Starker; Amber N. McElroy; Beau R. Webber; Megan Riddle; Lily Xia; Anthony P. Defeo; Richard Gabriel; Manfred Schmidt; Christof von Kalle; Daniel F. Carlson; Morgan L. Maeder; J. Keith Joung; John E. Wagner; Daniel F. Voytas; Bruce R. Blazar; Jakub Tolar

Recessive dystrophic epidermolysis bullosa (RDEB) is characterized by a functional deficit of type VII collagen protein due to gene defects in the type VII collagen gene (COL7A1). Gene augmentation therapies are promising, but run the risk of insertional mutagenesis. To abrogate this risk, we explored the possibility of using engineered transcription activator-like effector nucleases (TALEN) for precise genome editing. We report the ability of TALEN to induce site-specific double-stranded DNA breaks (DSBs) leading to homology-directed repair (HDR) from an exogenous donor template. This process resulted in COL7A1 gene mutation correction in primary fibroblasts that were subsequently reprogrammed into inducible pluripotent stem cells and showed normal protein expression and deposition in a teratoma-based skin model in vivo. Deep sequencing-based genome-wide screening established a safety profile showing on-target activity and three off-target (OT) loci that, importantly, were at least 10 kb from a coding sequence. This study provides proof-of-concept for TALEN-mediated in situ correction of an endogenous patient-specific gene mutation and used an unbiased screen for comprehensive TALEN target mapping that will cooperatively facilitate translational application.


Nature Medicine | 2009

Comprehensive genomic access to vector integration in clinical gene therapy.

Richard Gabriel; Ralph Eckenberg; Anna Paruzynski; Cynthia C. Bartholomae; Ali Nowrouzi; Anne Arens; Steven J. Howe; Claudia Cattoglio; Wei Wang; Katrin Faber; Kerstin Schwarzwaelder; Romy Kirsten; Annette Deichmann; Claudia R. Ball; Kamaljit S. Balaggan; Rafael J. Yáñez-Muñoz; Robin R. Ali; H. Bobby Gaspar; Luca Biasco; Alessandro Aiuti; Daniela Cesana; Eugenio Montini; Luigi Naldini; Odile Cohen-Haguenauer; Fulvio Mavilio; Aj Thrasher; Hanno Glimm; Christof von Kalle; William Saurin; Manfred Schmidt

Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as linear amplification–mediated PCR (LAM-PCR) require a restriction digest generating unevenly small fragments of the genome. Here we show that each restriction motif allows for identification of only a fraction of all genomic integrants, hampering the understanding and prediction of biological consequences after vector insertion. We developed a model to define genomic access to the viral integration site that provides optimal restriction motif combinations and minimizes the percentage of nonaccessible insertion loci. We introduce a new nonrestrictive LAM-PCR approach that has superior capabilities for comprehensive unbiased integration site retrieval in preclinical and clinical samples independent of restriction motifs and amplification inefficiency.


Nature Protocols | 2010

Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing

Anna Paruzynski; Anne Arens; Richard Gabriel; Cynthia C. Bartholomae; Simone Scholz; Wei Wang; Stephan Wolf; Hanno Glimm; Manfred Schmidt; Christof von Kalle

High-throughput integration site profiling has become a feasible tool to assess vector biosafety and to monitor the cell fate of the gene-corrected cell population in clinical gene therapy studies. Here we report a step-by-step protocol for universal genome-wide and comprehensive integrome analysis that can be performed on >102–103 samples of interest in parallel. This assay is composed of fast and cost-efficient non-restrictive linear amplification–mediated PCR; optimized sample preparation for pyrosequencing; and automated bioinformatic data mining, including sequence trimming, alignment to the cellular genome and further annotation. Moreover, the workflow of this large-scale assay can be adapted to any PCR-based method aiming to characterize unknown flanking DNA adjacent to a known DNA region. Thus, in combination with next-generation sequencing technologies, large-scale integrome analysis of >4 × 105–1 × 106 integration site sequences can be accomplished within a single week.


Molecular Therapy | 2009

Sleeping Beauty Transposition From Nonintegrating Lentivirus

Conrad A. Vink; H. Bobby Gaspar; Richard Gabriel; Manfred Schmidt; R. Scott McIvor; Adrian J. Thrasher; Waseem Qasim

Lentiviral vectors enter cells with high efficiency and deliver stable transduction through integration into host chromosomes, but their preference for integration within actively transcribing genes means that insertional mutagenesis following disruption of host proto-oncogenes is a recognized concern. We have addressed this problem by combining the efficient cell and nuclear entry properties of HIV-1-derived lentiviral vectors with the integration profile benefits of Sleeping Beauty (SB) transposase. Importantly, this integration enzyme does not exhibit a preference for integration within active genes. We generated integrase-deficient lentiviral vectors (IDLVs) to carry SB transposon and transposase expression cassettes. IDLVs were able to deliver transient transposase expression to target cells, and episomal lentiviral DNA was found to be a suitable substrate for integration via the SB pathway. The hybrid vector system allows genomic integration of a minimal promoter-transgene cassette flanked by short SB inverted repeats (IRs) but devoid of HIV-1 long terminal repeats (LTRs) or other virus-derived sequences. Importantly, integration site analysis revealed redirection toward a profile mimicking SB-plasmid integration and away from integration within transcriptionally active genes favored by integrase-proficient lentiviral vectors (ILVs).


Human Gene Therapy | 2015

Fanconi Anemia Gene Editing by the CRISPR/Cas9 System

Mark J. Osborn; Richard Gabriel; Beau R. Webber; Anthony P. Defeo; Amber N. McElroy; Jordan Jarjour; Colby G. Starker; John E. Wagner; J. Keith Joung; Daniel F. Voytas; Christof von Kalle; Manfred Schmidt; Bruce R. Blazar; Jakub Tolar

Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder.


Molecular Therapy | 2016

Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases

Mark J. Osborn; Beau R. Webber; Friederike Knipping; Cara Lin Lonetree; Nicole Tennis; Anthony P. Defeo; Amber N. McElroy; Colby G. Starker; Catherine A. Lee; Sarah C. Merkel; Troy C. Lund; Karen S. Kelly-Spratt; Michael C. Jensen; Daniel F. Voytas; Christof von Kalle; Manfred Schmidt; Richard Gabriel; Keli L. Hippen; Jeffrey S. Miller; Andrew M. Scharenberg; Jakub Tolar; Bruce R. Blazar

Present adoptive immunotherapy strategies are based on the re-targeting of autologous T-cells to recognize tumor antigens. As T-cell properties may vary significantly between patients, this approach can result in significant variability in cell potency that may affect therapeutic outcome. More consistent results could be achieved by generating allogeneic cells from healthy donors. An impediment to such an approach is the endogenous T-cell receptors present on T-cells, which have the potential to direct dangerous off-tumor antihost reactivity. To address these limitations, we assessed the ability of three different TCR-α-targeted nucleases to disrupt T-cell receptor expression in primary human T-cells. We optimized the conditions for the delivery of each reagent and assessed off-target cleavage. The megaTAL and CRISPR/Cas9 reagents exhibited the highest disruption efficiency combined with low levels of toxicity and off-target cleavage, and we used them for a translatable manufacturing process to produce safe cellular substrates for next-generation immunotherapies.


Human Gene Therapy Methods | 2012

Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites.

Anne Arens; Jens Uwe Appelt; Cynthia C. Bartholomae; Richard Gabriel; Anna Paruzynski; Derek Gustafson; Nathalie Cartier; Patrick Aubourg; Annette Deichmann; Hanno Glimm; Christof von Kalle; Manfred Schmidt

Clonality analysis of viral vector-transduced cell populations represents a convincing approach to dissect the physiology of tissue and organ regeneration, to monitor the fate of individual gene-corrected cells in vivo, and to assess vector biosafety. With the decoding of mammalian genomes and the introduction of next-generation sequencing technologies, the demand for automated bioinformatic analysis tools that can rapidly process and annotate vector integration sites is rising. Here, we provide a publicly accessible, graphical user interface-guided automated bioinformatic high-throughput integration site analysis pipeline. Its performance and key features are illustrated on pyrosequenced linear amplification-mediated PCR products derived from one patient previously enrolled in the first lentiviral vector clinical gene therapy study. Analysis includes trimming of vector genome junctions, alignment of genomic sequence fragments to the host genome for the identification of integration sites, and the annotation of nearby genomic elements. Most importantly, clinically relevant features comprise the determination of identical integration sites with respect to different time points or cell lineages, as well as the retrieval of the most prominent cell clones and common integration sites. The resulting output is summarized in tables within a convenient spreadsheet and can be further processed by researchers without profound bioinformatic knowledge.


Molecular Therapy | 2011

Insertion Sites in Engrafted Cells Cluster Within a Limited Repertoire of Genomic Areas After Gammaretroviral Vector Gene Therapy

Annette Deichmann; Martijn H. Brugman; Cynthia C. Bartholomae; Kerstin Schwarzwaelder; Monique M.A. Verstegen; Steven J. Howe; Anne Arens; Marion Ott; Dieter Hoelzer; Reinhard Seger; Manuel Grez; Salima Hacein-Bey-Abina; Marina Cavazzana-Calvo; Alain Fischer; Anna Paruzynski; Richard Gabriel; Hanno Glimm; Ulrich Abel; Claudia Cattoglio; Fulvio Mavilio; Barbara Cassani; Alessandro Aiuti; Cynthia E. Dunbar; Christopher Baum; H. Bobby Gaspar; Adrian J. Thrasher; Christof von Kalle; Manfred Schmidt; Gerard Wagemaker

Vector-associated side effects in clinical gene therapy have provided insights into the molecular mechanisms of hematopoietic regulation in vivo. Surprisingly, many retrovirus insertion sites (RIS) present in engrafted cells have been found to cluster nonrandomly in close association with specific genes. Our data demonstrate that these genes directly influence the in vivo fate of hematopoietic cell clones. Analysis of insertions thus far has been limited to individual clinical studies. Here, we studied >7,000 insertions retrieved from various studies. More than 40% of all insertions found in engrafted gene-modified cells were clustered in the same genomic areas covering only 0.36% of the genome. Gene classification analyses displayed significant overrepresentation of genes associated with hematopoietic functions and relevance for cell growth and survival in vivo. The similarity of insertion distributions indicates that vector insertions in repopulating cells cluster in predictable patterns. Thus, insertion analyses of preclinical in vitro and murine in vivo studies as well as vector insertion repertoires in clinical trials yielded concerted results and mark a small number of interesting genomic loci and genes that warrants further investigation of the biological consequences of vector insertions.


Journal of Virology | 2011

Foamy Virus Nuclear RNA Export Is Distinct from That of Other Retroviruses

Jochen Bodem; Tanja Schied; Richard Gabriel; Matthias Rammling; Axel Rethwilm

ABSTRACT Most retroviruses express all of their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. Two pathways have been described that explain how retroviruses circumvent this nuclear export inhibition. One involves a constitutive transport element in the viral RNA that interacts with the cellular mRNA transporter proteins NXF1 and NXT1 to facilitate nuclear export. The other pathway relies on the recognition of a viral RNA element by a virus-encoded protein that interacts with the karyopherin CRM1. In this report, we analyze the protein factors required for the nuclear export of unspliced foamy virus (FV) mRNA. We show that this export is CRM1 dependent. In contrast to other complex retroviruses, FVs do not encode an export-mediating protein. Cross-linking experiments indicated that the cellular protein HuR binds to the FV RNA. Inhibition studies showed that both ANP32A and ANP32B, which are known to bridge HuR and CRM1, are essential for FV RNA export. By using this export pathway, FVs solve a central problem of viral replication.

Collaboration


Dive into the Richard Gabriel's collaboration.

Top Co-Authors

Avatar

Manfred Schmidt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Christof von Kalle

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Howe

University College London

View shared research outputs
Top Co-Authors

Avatar

Aj Thrasher

University College London

View shared research outputs
Top Co-Authors

Avatar

Hanno Glimm

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Anne Arens

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Rj Yanez-Munoz

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Ali Nowrouzi

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Annette Deichmann

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge