Richard Goodman
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Goodman.
Journal of the ACM | 1976
Alan Feldstein; Richard Goodman
This paper analyzes the distribution of trailing digits (tail end digits) of positive real floating-point numbers represented in arbitrary base <italic>β</italic> and randomly chosen from a logarithmic distribution. The analysis shows that the <italic>n</italic>th digit for <italic>n</italic> ≥ 2 is actually approximately uniformly distributed. The approximation depends upon both <italic>n</italic> and the base<italic>β</italic>. It becomes better as <italic>n</italic> increases, and it is exact in the limit as <italic>n</italic> ⇒ ∞. A table of this distribution is presented for various β and <italic>n</italic>, along with a table of the maximum digit by digit deviation Δ of the logarithmic distribution from the uniform distribution. Various asymptotic results for Δ are included. These results have application in resolving open questions of Henrici, of Kaneko and Liu, and of Tsao.
Numerische Mathematik | 1973
Alan Feldstein; Richard Goodman
SummaryThis paper studies the propagation of discretization error for discontinuou ordinary and retarded differential equations. Various applications are given including one which extends a fundamental theorem of Henrici concerning round-off error.
Journal of the ACM | 1979
Joaquín Bustoz; Alan Feldstein; Richard Goodman; Seppo Linnainmaa
New results are given on the distribution of trailing digits for logarithmically distributed numbers and on error in floating-point multiplication Some of the results have application to computer design In particular, there are certain values of the base (indeed,/3 = 2, 4, 6, and sometimes 8, but NOT 16) which, when carefully balanced with other design parameters, minimize the mean multiphcative error For these special minimizing situations, it suffices to have only one guard flit provided that posmormahzatlon occurs after symmetric rounding
Computing | 1975
Richard Goodman; Alan Feldstein
ZusammenfassungSeienA1 undA2 zufällige Gleitkommazahlen zu einer beliebigen Basis β mit einer logarithmischen Verteilung. Seir der Rundungsfehler
Journal of Multivariate Analysis | 1984
Robert W. Chen; Richard Goodman; Alan Zame
Numerische Mathematik | 1973
Richard Goodman; Alan Feldstein
r = fl(A_1 * A_2 ) - (A_1 * A_2 )
Bit Numerical Mathematics | 1976
Richard Goodman
Computing | 1985
Richard Goodman; Alan Feldstein; Joaquín Bustoz
, wo * die Gleitkommamultiplikation bedeutet undfl(A1*A2) das normalisierteN-stellige Computerresultat für (A1*A2). Die Arbeit analysiert Mittelwert und Varianz des Rundungsfehlers sowohl des Ergebnisses wie auch dessen Mantisse. Die Analyse beruht auf scharfen Ordnungsabschätzungen der Abweichung pro Mantissenstelle zwischen logarithmisch verteilten Zahlen und gleichverteilten Zahlen. Offene Probleme von Kaneko und Liu und von Tsao werden vollständig gelöst. Ferner wird ein wichtiger Rundungsfehler-Satz von Henrici auf beliebige Basis (von der Basis 2) verallgemeinert.AbstractLetA1 andA2 be floating point numbers represented in arbitrary base β and randomly chosen from a logarithmic distribution. Letr denote the round-off error
Computing | 1981
Richard Goodman
Computing | 1977
Richard Goodman; Alan Feldstein
r = fl(A_1 * A_2 ) - (A_1 * A_2 )