Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard H. G. Baxter is active.

Publication


Featured researches published by Richard H. G. Baxter.


Cell Host & Microbe | 2009

Two Mosquito LRR Proteins Function as Complement Control Factors in the TEP1-Mediated Killing of Plasmodium

Malou Fraiture; Richard H. G. Baxter; Stefanie Steinert; Yogarany Chelliah; Cécile Frolet; Wilber Quispe-Tintaya; Jules A. Hoffmann; Stéphanie Blandin; Elena A. Levashina

Plasmodium development within Anopheles mosquitoes is a vulnerable step in the parasite transmission cycle, and targeting this step represents a promising strategy for malaria control. The thioester-containing complement-like protein TEP1 and two leucine-rich repeat (LRR) proteins, LRIM1 and APL1, have been identified as major mosquito factors that regulate parasite loads. Here, we show that LRIM1 and APL1 are required for binding of TEP1 to parasites. RNAi silencing of the LRR-encoding genes results in deposition of TEP1 on Anopheles tissues, thereby depleting TEP1 from circulation in the hemolymph and impeding its binding to Plasmodium. LRIM1 and APL1 not only stabilize circulating TEP1, they also stabilize each other prior to their interaction with TEP1. Our results indicate that three major antiparasitic factors in mosquitoes jointly function as a complement-like system in parasite killing, and they reveal a role for LRR proteins as complement control factors.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity

Yihua Huang; Richard H. G. Baxter; Barbara S. Smith; Carrie L. Partch; Christopher L. Colbert; Johann Deisenhofer

Cryptochromes use near-UV/blue light to regulate a variety of growth and adaptive process. Recent biochemical studies demonstrate that the Cryptochrome-Drosophila, Arabidopsis, Synechocystis, Human (Cry-DASH) subfamily of cryptochromes have photolyase activity exclusively for single-stranded cyclobutane pyrimidine dimer (CPD)-containing DNA substrate [Selby C, Sancar A (2006) Proc Natl Acad Sci USA 103:17696–17700]. The crystal structure of cryptochrome 3 from Arabidopsis thaliana (At-Cry3), a member of the Cry-DASH proteins, at 2.1 Å resolution, reveals that both the light-harvesting cofactor 5,10-methenyl-tetrahydrofolyl-polyglutamate (MTHF) and the catalytic cofactor flavin adenine dinucleotide (FAD) are noncovalently bound to the protein. The residues responsible for binding of MTHF in At-Cry3 are not conserved in Escherichia coli photolyase but are strongly conserved in the Cry-DASH subfamily of cryptochromes. The distance and orientation between MTHF and flavin adenine dinucleotide in At-Cry3 is similar to that of E. coli photolyase, in conjunction with the presence of electron transfer chain, suggesting the conservation of redox activity in At-Cry3. Two amino acid substitutions and the penetration of three charged side chains into the CPD-binding cavity in At-Cry3 alter the hydrophobic environment that is accommodating the hydrophobic sugar ring and thymine base moieties in class I CPD photolyases. These changes most likely make CPD binding less energetically favorable and, hence, insufficient to compete with pairing and stacking interactions between the CPD and the duplex DNA substrate. Thus, Cry-DASH subfamily proteins may be unable to stabilize CPD flipped out from the duplex DNA substrate but may be able to preserve the DNA repair activity toward single-stranded CPD-containing DNA substrate.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structural basis for conserved complement factor-like function in the antimalarial protein TEP1

Richard H. G. Baxter; Chung-I Chang; Yogarany Chelliah; Stéphanie Blandin; Elena A. Levashina; Johann Deisenhofer

Thioester-containing proteins (TEPs) are a major component of the innate immune response of insects to invasion by bacteria and protozoa. TEPs form a distinct clade of a superfamily that includes the pan-protease inhibitors α2-macroglobulins and vertebrate complement factors. The essential feature of these proteins is a sequestered thioester bond that, after cleavage in a protease-sensitive region of the protein, is activated and covalently binds to its target. Recently, TEP1 from the malarial vector Anopheles gambiae was shown to mediate recognition and killing of ookinetes from the malarial parasite Plasmodium berghei, a model for the human malarial parasite Plasmodium falciparum. Here, we present the crystal structure of the TEP1 isoform TEP1r. Although the overall protein fold of TEP1r resembles that of complement factor C3, the TEP1r domains are repositioned to stabilize the inactive conformation of the molecule (containing an intact thioester) in the absence of the anaphylotoxin domain, a central component of complement factors. The structure of TEP1r provides a molecular basis for the differences between TEP1 alleles TEP1r and TEP1s, which correlate with resistance of A. gambiae to infection by P. berghei.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC

Yihua Huang; Barbara S. Smith; Lucy X. Chen; Richard H. G. Baxter; Johann Deisenhofer

Ushers constitute a family of bacterial outer membrane proteins responsible for the assembly and secretion of surface organelles such as the pilus. The structure at 3.15-Å resolution of the usher pyelonephritis-associated pili C (PapC) translocation domain reveals a 24-stranded kidney-shaped β-barrel, occluded by an internal plug domain. The dimension of the pore allows tandem passage of individual folded pilus subunits in an upright pilus growth orientation, but is insufficient for accommodating donor strand exchange. The molecular packing revealed by the crystal structure shows that 2 PapC molecules in head-to-head orientation interact via exposed β-strand edges, which could be the preferred dimer interaction in solution. In vitro reconstitution of fiber assemblies suggest that PapC monomers may be sufficient for fiber assembly and secretion; both the plug domain and the C-terminal domain of PapC are required for filament assembly, whereas the N-terminal domain is mainly responsible for recruiting the chaperone–subunit complexes to the usher. The plug domain has a dual function: gating the β-pore and participating in pilus assembly.


Nature Communications | 2016

Data publication with the structural biology data grid supports live analysis

Peter Meyer; Stephanie Socias; Jason Key; Elizabeth Ransey; Emily C. Tjon; Alejandro Buschiazzo; Ming Lei; Chris Botka; James Withrow; David Neau; Kanagalaghatta R. Rajashankar; Karen S. Anderson; Richard H. G. Baxter; Stephen C. Blacklow; Titus J. Boggon; Alexandre M. J. J. Bonvin; Dominika M. Borek; Tom J. Brett; Amedeo Caflisch; Chung I. Chang; Walter J. Chazin; Kevin D. Corbett; Michael S. Cosgrove; Sean Crosson; Sirano Dhe-Paganon; Enrico Di Cera; Catherine L. Drennan; Michael J. Eck; Brandt F. Eichman; Qing R. Fan

Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A heterodimeric complex of the LRR proteins LRIM1 and APL1C regulates complement-like immunity in Anopheles gambiae

Richard H. G. Baxter; Stefanie Steinert; Yogarany Chelliah; Gloria Volohonsky; Elena A. Levashina; Johann Deisenhofer

The leucine-rich repeat (LRR) proteins LRIM1 and APL1C control the function of the complement-like protein TEP1 in Anopheles mosquitoes. The molecular structure of LRIM1 and APL1C and the basis of their interaction with TEP1 represent a new type of innate immune complex. The LRIM1/APL1C complex specifically binds and solubilizes a cleaved form of TEP1 without an intact thioester bond. The LRIM1 and APL1C LRR domains have a large radius of curvature, glycosylated concave face, and a novel C-terminal capping motif. The LRIM1/APL1C complex is a heterodimer with a single intermolecular disulfide bond. The structure of the LRIM1/APL1C heterodimer reveals an interface between the two LRR domains and an extensive C-terminal coiled-coil domain. We propose that a cleaved form of TEP1 may act as a convertase for activation of other TEP1 molecules and that the LRIM1/APL1C heterodimer regulates formation of this TEP1 convertase.


PLOS Pathogens | 2012

Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles.

Binh V. Le; Marni Williams; Shankar Logarajah; Richard H. G. Baxter

Thioester-containing protein 1 (TEP1) is a central component in the innate immune response of Anopheles gambiae to Plasmodium infection. Two classes of TEP1 alleles, TEP1*S and TEP1*R, are found in both laboratory strains and wild isolates, related by a greater or lesser susceptibility, respectively to both P. berghei and P. falciparum infection. We report the crystal structure of the full-length TEP1*S1 allele which, while similar to the previously determined structure of full-length TEP1*R1, displays flexibility in the N-terminal fragment comprising domains MG1-MG6. Amino acid differences between TEP1*R1 and TEP1*S1 are localized to the TED-MG8 domain interface that protects the thioester bond from hydrolysis and structural changes are apparent at this interface. As a consequence cleaved TEP1*S1 (TEP1*S1cut) is significantly more susceptible to hydrolysis of its intramolecular thioester bond than TEP1*R1cut. TEP1*S1cut is stabilized in solution by the heterodimeric LRIM1/APL1C complex, which preserves the thioester bond within TEP1*S1cut. These results suggest a mechanism by which selective pressure on the TEP1 gene results in functional variation that may influence the vector competence of A. gambiae towards Plasmodium infection.


Clinical Cancer Research | 2012

Quantitative Immunofluorescence Reveals the Signature of Active B Cell Receptor Signaling in Diffuse Large B Cell Lymphoma

Agata M. Bogusz; Richard H. G. Baxter; Treeve Currie; Papiya Sinha; Aliyah R. Sohani; Jeffery L. Kutok; Scott J. Rodig

PURPOSE B-cell receptor (BCR)-mediated signaling is important in the pathogenesis of a subset of diffuse large B-cell lymphomas (DLBCL) and the BCR-associated kinases SYK and BTK have recently emerged as potential therapeutic targets. We sought to identify a signature of activated BCR signaling in DLBCL to aid the identification of tumors that may be most likely to respond to BCR-pathway inhibition. EXPERIMENTAL DESIGN We applied quantitative immunofluorescence (qIF) using antibodies to phosphorylated forms of proximal BCR signaling kinases LYN, SYK, and BTK and antibody to BCR-associated transcription factor FOXO1 on BCR-cross-linked formalin-fixed paraffin-embedded (FFPE) DLBCL cell lines as a model system and on two clinical cohorts of FFPE DLBCL specimens (n = 154). RESULTS A robust signature of active BCR signaling was identified and validated in BCR-cross-linked DLBCL cell lines and in 71/154 (46%) of the primary DLBCL patient specimens. Further analysis of the primary biopsy samples revealed increased nuclear exclusion of FOXO1 among DLBCL with qIF evidence of active BCR signaling compared with those without (P = 0.004). Nuclear exclusion of FOXO1 was also detected in a subset of DLBCL without evidence of proximal BCR signaling suggesting that alternative mechanisms for PI3K/AKT activation may mediate FOXO1 subcellular localization in these cases. CONCLUSION This study establishes the feasibility of detecting BCR activation in primary FFPE biopsy specimens of DLBCL. It lays a foundation for future dissection of signal transduction networks in DLBCL and provides a potential platform for evaluating individual tumors in patients receiving novel therapies targeting the BCR pathway.


Journal of Organic Chemistry | 2014

X-ray Crystal Structure of Teicoplanin A2-2 Bound to a Catalytic Peptide Sequence via the Carrier Protein Strategy

Sunkyu Han; Binh V. Le; Holly S. Hajare; Richard H. G. Baxter; Scott J. Miller

We report the X-ray crystal structure of a site-selective peptide catalyst moiety and teicoplanin A2-2 complex. The expressed protein ligation technique was used to couple T4 lysozyme (T4L) and a synthetic peptide catalyst responsible for the selective phosphorylation of the N-acetylglucosamine sugar in a teicoplanin A2-2 derivative. The T4L-Pmh-dPro-Aib-dAla-dAla construct was crystallized in the presence of teicoplanin A2-2. The resulting 2.3 Å resolution protein–peptide–teicoplanin complex crystal structure revealed that the nucleophilic nitrogen of N-methylimidazole in the Pmh residue is in closer proximity (7.6 Å) to the N-acetylglucosamine than the two other sugar rings present in teicoplanin (9.3 and 20.3 Å, respectively). This molecular arrangement is consistent with the observed selectivity afforded by the peptide-based catalyst when it is applied to a site-selective phosphorylation reaction involving a teicoplanin A2-2 derivative.


Biochemistry | 2017

Arthropod Innate Immune Systems and Vector-Borne Diseases

Richard H. G. Baxter; Alicia Contet; Kathryn Krueger

Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

Collaboration


Dive into the Richard H. G. Baxter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Deisenhofer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yogarany Chelliah

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Agata M. Bogusz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara S. Smith

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge