Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard H. Pierce is active.

Publication


Featured researches published by Richard H. Pierce.


Nature | 2005

Brevetoxicosis: Red tides and marine mammal mortalities

Leanne J. Flewelling; Jerome Naar; Jay P. Abbott; Daniel G. Baden; Nélio B. Barros; Gregory D. Bossart; Marie-Yasmine D. Bottein; Daniel G. Hammond; Elsa M. Haubold; Cynthia A. Heil; Michael S. Henry; Henry M. Jacocks; Tod A. Leighfield; Richard H. Pierce; Thomas D. Pitchford; Sentiel A. Rommel; Paula S. Scott; Karen A. Steidinger; Earnest W. Truby; Frances M. Van Dolah; Jan H. Landsberg

Potent marine neurotoxins known as brevetoxins are produced by the ‘red tide’ dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.


Harmful Algae | 2003

Recreational exposure to aerosolized brevetoxins during Florida red tide events

Lorraine C. Backer; Lora E. Fleming; Alan Rowan; Yung Sung Cheng; Janet M. Benson; Richard H. Pierce; Julia Zaias; Judy A. Bean; Gregory D. Bossart; David R. Johnson; Raul Quimbo; Daniel G. Baden

Abstract During two separate Karenia brevis red tide events, we measured the levels of brevetoxins in air and water samples, conducted personal interviews, and performed pulmonary function tests on people before and after they visited one of two Florida beaches. One hundred and twenty-nine people participated in the study, which we conducted during red tide events in Sarasota and Jacksonville, FL, USA. Exposure was categorized into three levels: low/no exposure, moderate exposure, and high exposure. Lower respiratory symptoms (e.g. wheezing) were reported by 8% of unexposed people, 11% of the moderately exposed people, and 28% of the highly exposed people. We performed nasal–pharyngeal swabs on people who experienced moderate or high exposure, and we found an inflammatory response in over 33% of these participants. We did not find any clinically significant changes in pulmonary function test results; however, the study population was small. In future epidemiologic studies, we plan to further investigate the human health impact of inhaled brevetoxins.


Environmental Health Perspectives | 2005

Initial evaluation of the effects of aerosolized Florida red tide toxins (brevetoxins) in persons with asthma

Lora E. Fleming; Barbara Kirkpatrick; Lorraine C. Backer; Judy A. Bean; Adam Wanner; Dana Dalpra; Robert Tamer; Julia Zaias; Yung Sung Cheng; Richard H. Pierce; Jerome Naar; William M. Abraham; Richard Clark; Yue Zhou; Michael S. Henry; David R. Johnson; Gayl Van De Bogart; Gregory D. Bossart; Mark Harrington; Daniel G. Baden

Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic effects of these toxins among persons with asthma and other chronic respiratory impairment.


Environmental Health Perspectives | 2005

Characterization of marine aerosol for assessment of human exposure to brevetoxins.

Yung Sung Cheng; Yue Zhou; Clinton M. Irvin; Richard H. Pierce; Jerome Naar; Lorraine C. Backer; Lora E. Fleming; Barbara Kirkpatrick; Daniel G. Baden

Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 μg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m3. The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6–12 μm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods.


Environmental Health Perspectives | 2005

Occupational exposure to aerosolized brevetoxins during Florida red tide events: Effects on a healthy worker population

Lorraine C. Backer; Barbara Kirkpatrick; Lora E. Fleming; Yung Sung Cheng; Richard H. Pierce; Judy A. Bean; Richard Clark; David R. Johnson; Adam Wanner; Robert Tamer; Yue Zhou; Daniel G. Baden

Karenia brevis (formerly Gymnodinium breve) is a marine dinoflagellate responsible for red tides that form in the Gulf of Mexico. K. brevis produces brevetoxins, the potent toxins that cause neurotoxic shellfish poisoning. There is also limited information describing human health effects from environmental exposures to brevetoxins. Our objective was to examine the impact of inhaling aerosolized brevetoxins during red tide events on self-reported symptoms and pulmonary function. We recruited a group of 28 healthy lifeguards who are occupationally exposed to red tide toxins during their daily work-related activities. They performed spirometry tests and reported symptoms before and after their 8-hr shifts during a time when there was no red tide (unexposed period) and again when there was a red tide (exposed period). We also examined how mild exercise affected the reported symptoms and spirometry tests during unexposed and exposed periods with a subgroup of the same lifeguards. Environmental sampling (K. brevis cell concentrations in seawater and brevetoxin concentrations in seawater and air) was used to confirm unexposed/exposed status. Compared with unexposed periods, the group of lifeguards reported more upper respiratory symptoms during the exposed periods. We did not observe any impact of exposure to aerosolized brevetoxins, with or without mild exercise, on pulmonary function.


Toxicon | 1986

Red tide (Ptychodiscus brevis) toxin aerosols: A review

Richard H. Pierce

Advances in knowledge concerning red tide toxin aerosols (airborne) of the Florida red tide organism, Ptychodiscus brevis, have not kept pace with information about waterborne toxins. This review provides a summary of current knowledge regarding the characterization, effect and production of red tide toxin aerosols. Insight into the chemical characterization and toxic effects of aerosolized toxins is provided from investigations of toxins extracted from natural blooms, as well as from laboratory cultures, of P. brevis. This information is used in conjunction with the few studies that have been performed on toxin aerosols to consider toxic effects. The production of aerosolized toxins is considered through studies of jet drop aerosol formation from bursting bubbles. Existing information suggests that aerosolized red tide toxins may be the same chemicals as those extracted from laboratory cultures, with one of the toxins having a greater respiratory effect than others.


Environmental Health Perspectives | 2009

Exposure and Effect Assessment of Aerosolized Red Tide Toxins (Brevetoxins) and Asthma

Lora E. Fleming; Judy A. Bean; Barbara Kirkpatrick; Yung Sung Cheng; Richard H. Pierce; Jerome Naar; Kate Nierenberg; Lorraine C. Backer; Adam Wanner; Andrew Reich; Yue Zhou; Sharon Watkins; Mike Henry; Julia Zaias; William M. Abraham; Janet M. Benson; Amy Cassedy; Julie Hollenbeck; Gary J. Kirkpatrick; Tainya C. Clarke; Daniel G. Baden

Background In previous studies we demonstrated statistically significant changes in reported symptoms for lifeguards, general beach goers, and persons with asthma, as well as statistically significant changes in pulmonary function tests (PFTs) in asthmatics, after exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols. Objectives In this study we explored the use of different methods of intensive ambient and personal air monitoring to characterize these exposures to predict self-reported health effects in our asthmatic study population. Methods We evaluated health effects in 87 subjects with asthma before and after 1 hr of exposure to Florida red tide aerosols and assessed for aerosolized brevetoxin exposure using personal and ambient samplers. Results After only 1 hr of exposure to Florida red tide aerosols containing brevetoxin concentrations > 57 ng/m3, asthmatics had statistically significant increases in self-reported respiratory symptoms and total symptom scores. However, we did not see the expected corresponding changes in PFT results. Significant increases in self-reported symptoms were also observed for those not using asthma medication and those living ≥ 1 mile from the coast. Conclusions These results provide additional evidence of health effects in asthmatics from ambient exposure to aerosols containing very low concentrations of brevetoxins, possibly at the lower threshold for inducing a biologic response (i.e., toxicity). Consistent with the literature describing self-reported symptoms as an accurate measure of asthmatic distress, our results suggest that self-reported symptoms are a valuable measure of the extent of health effects from exposure to aerosolized brevetoxins in asthmatic populations.


Marine Pollution Bulletin | 1985

Hydrocarbon contamination in sediments from urban stormwater runoff

Robert C. Brown; Richard H. Pierce; Stanley A. Rice

Abstract This investigation showed that urban stormwater runoff provides a significant amount of petrogenic material to receiving waters and sediments. A characteristic hydrocarbon ‘fingerprint’ for sediments and particulate matter in the Hillsborough Reservoir, Hillsborough River and upper Hillsborough Bay was provided. Determination of source material for petroleum contamination in stormwater runoff and river sediment indicated that crankcase oil was a primary contributor to sediment hydrocarbon contamination. A comparison of sediment hydrocarbons with hydrocarbons from stormwater runoff showed that the most probable source of crankcase oil-like petrochemicals found in sediment was the stormwater runoff. A comparison of hydrocarbon composition in suspended particulate matter with that of accumulated bottom sediments in the reservoir, river and bay, during a non-storm period and rising tide showed no resuspension and upriver transport of petroleum contaminated bay sediment. No special influence of the bay upon the lower river was observed relative to hydrocarbon tracers, indicating that most contaminated sediment transport was downriver during storm events. Additional studies should be performed over various tidal cycles and storm events incorporating sediment cores, sediment grain size analysis and hydrocarbon characterization at more closely spaced stations near the river mouth to address adequately the question of specific hydrocarbon pollution sources, rate of petroleum influx and persistence of petrochemical contaminants in the sediment.


Bulletin of Environmental Contamination and Toxicology | 1984

Coprostanol distribution from sewage discharge into Sarasota Bay, Florida

Richard H. Pierce; R. C. Brown

Distribution of the fecal sterol, coprostanol, was determined in sediment from forty-one sites throughout Sarasota Bay, Florida. This project was part of a water quality study to estimate the impact of sewage effluent discharged from the City of Sarasotas wastewater treatment plant into Sarasota Bay. Coprostanol (5..beta..-cholestan-3..beta..-ol) is one of the principal sterols found in the feces of man and other mammals, and has been shown to be a reliable marker of fecal pollution. For this study, coprostanol was used as an indicator to estimate the extent to which sewage-derived particulate matter has been distributed within Sarasota Bay sediment.


Toxicon | 2008

Monitoring of brevetoxins in the Karenia brevis bloom-exposed Eastern oyster (Crassostrea virginica).

Steven M. Plakas; Edward L. E. Jester; Kathleen R. El Said; Hudson R. Granade; Ann Abraham; Robert W. Dickey; Paula S. Scott; Leanne J. Flewelling; Michael S. Henry; Patricia Blum; Richard H. Pierce

Brevetoxin uptake and elimination were examined in Eastern oyster (Crassostrea virginica) exposed to recurring blooms of the marine alga Karenia brevis in Sarasota Bay, FL, over a three-year period. Brevetoxins were monitored by in vitro assays (ELISA, cytotoxicity assay, and receptor binding assay) and LC-MS, with in vivo toxicity of shellfish extracts assessed by the traditional mouse bioassay. Measurements by all methods reflected well the progression and magnitude of the blooms. Highest levels recorded by mouse bioassay at bloom peak were 157 MU/100g. Oysters were toxic by mouse bioassay at levels >or=20 MU/100g for up to two weeks after bloom dissipation, whereas brevetoxins were measurable by in vitro assays and LC-MS for several months afterwards. For the structure-based methods, summed values for the principal brevetoxin metabolites of PbTx-2 (cysteine and cysteine sulfoxide conjugates), as determined by LC-MS, were highly correlated (r(2)=0.90) with composite toxin measurements by ELISA. ELISA and LC-MS values also correlated well (r(2)=0.74 and 0.73, respectively) with those of mouse bioassay. Pharmacology-based cytotoxicity and receptor binding assays did not correlate as well (r(2)=0.65), and were weakly correlated with mouse bioassay (r(2)=0.48 and 0.50, respectively). ELISA and LC-MS methods offer rapid screening and confirmation, respectively, of brevetoxin contamination in the oyster, and are excellent alternatives to mouse bioassay for assessing oyster toxicity following K. brevis blooms.

Collaboration


Dive into the Richard H. Pierce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel G. Baden

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Jerome Naar

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Yung Sung Cheng

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorraine C. Backer

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yue Zhou

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Leanne J. Flewelling

Florida Fish and Wildlife Conservation Commission

View shared research outputs
Researchain Logo
Decentralizing Knowledge