Richard H. Scheller
Howard Hughes Medical Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard H. Scheller.
Nature Reviews Molecular Cell Biology | 2001
Yu Alice Chen; Richard H. Scheller
SNARE proteins have been proposed to mediate all intracellular membrane fusion events. There are over 30 SNARE family members in mammalian cells and each is found in a distinct subcellular compartment. It is likely that SNAREs encode aspects of membrane transport specificity but the mechanism by which this specificity is achieved remains controversial. Functional studies have provided exciting insights into how SNARE proteins interact with each other to generate the driving force needed to fuse lipid bilayers.
Cell | 1996
Medha Gautam; Peter G. Noakes; Lisa M. Moscoso; Fabio Rupp; Richard H. Scheller; John P. Merlie; Joshua R. Sanes
During neuromuscular synapse formation, motor axons induce clustering of acetylcholine receptors (AChRs) in the muscle fiber membrane. The protein agrin, originally isolated from the basal lamina of the synaptic cleft, is synthesized and secreted by motoneurons and triggers formation of AChR clusters on cultured myotubes. We show here postsynaptic AChR aggregates are markedly reduced in number, size, and density in muscles of agrin-deficient mutant mice. These results support the hypothesis that agrin is a critical organizer of postsynaptic differentiation does occur in the mutant, suggesting the existence of a second-nerve-derived synaptic organizing signal. In addition, we show that intramuscular nerve branching and presynaptic differentiation are abnormal in the mutant, phenotypes which may reflect either a distinct effect of agrin or impaired retrograde signaling from a defective postsynaptic apparatus.
Cell | 1994
James T. Campanelll; Steven L. Roberds; Kevin P. Campbell; Richard H. Scheller
Synapse formation is characterized by the accumulation of molecules at the site of contact between pre- and postsynaptic cells. Agrin, a protein implicated in the regulation of this process, causes the clustering of acetylcholine receptors (AChRs). Here we characterize an agrin-binding site on the surface of muscle cells, show that this site corresponds to alpha-dystroglycan, and present evidence that alpha-dystroglycan is functionally related to agrin activity. Furthermore, we demonstrate that alpha-dystroglycan and adhalin, components of the dystrophin-associated glycoprotein complex, as well as utrophin, colocalize with agrin-induced AChR clusters. Thus, agrin may function by initiating or stabilizing a synapse-specific membrane cytoskeleton that in turn serves as a scaffold upon which synaptic molecules are concentrated.
Neuron | 1993
Michael J. Ferns; James T. Campanelli; Werner Hoch; Richard H. Scheller; Zach W. Hall
Agrin, which induces acetylcholine receptor (AChR) clustering at the developing neuromuscular synapse, occurs in multiple forms generated by alternative splicing. Some of these isoforms are specific to the nervous system; others are expressed in both neural and nonneural tissues, including muscle. We have compared the AChR clustering activity of agrin forms varying at each of the three identified splicing sites, denoted x, y, and z. Agrin isoforms were assayed by applying either transfected COS cells, with agrin bound to their surfaces, or soluble agrin to myotubes of the C2 muscle line, or of two variant lines having defective proteoglycans. Dramatic differences in activity were seen between z site isoforms and lesser differences between y site isoforms. The most active agrin forms contained splicing inserts of 4 amino acids at the y site and 8 amino acids at the z site. These forms are found exclusively in neural tissue. All forms were active on C2 myotubes in cell-attached assays, but muscle forms were less active than neural forms. AChR clustering activity of all agrin forms was decreased when assayed on the proteoglycan-deficient lines, suggesting that proteoglycans may help mediate the action of agrin. As neural agrin forms are more active than muscle forms, they are likely to play a primary role in synaptogenesis.
Neuron | 1991
Fabio Rupp; Donald G. Payan; Catherine Magill-Solc; David M. Cowan; Richard H. Scheller
Agrin is a component of the basal lamina that causes the aggregation of acetylcholine receptors on cultured muscle fibers. An agrin cDNA clone isolated from electromotor neurons of a marine ray was used to characterize the corresponding cDNAs from a rat embryonic spinal cord library. Analysis of a set of clones predicts a 1940 amino acid protein containing 141 cysteine residues. The predicted protein has nine domains homologous to protease inhibitors, a region similar to domain III of laminin, and four epidermal growth factor repeats. The agrin gene is expressed in rat embryonic nervous system and muscle. The rat agrin protein is concentrated at synapses, where it may play a role in development and regeneration.
Cell | 1983
Richard H. Scheller; James F. Jackson; Linda Beth McAllister; Barry S. Rothman; Earl Mayeri; Richard Axel
Egg laying in Aplysia is characterized by a stereotyped behavioral array which is mediated by several neuroactive peptides. We have sequenced two genes encoding the A and B peptides thought to initiate the egg-laying process, as well as a gene encoding egg-laying hormone (ELH) which directly mediates the behavioral array. The three genes share 90% sequence homology and are representatives of a small multigene family. Each gene encodes a protein precursor in which the active peptides are flanked by internal cleavage sites providing the potential to generate multiple small peptides. Each of the three genes consists of sequences homologous to A or B peptide as well as ELH. Although these genes share significant nucleotide homology, they have diverged such that different member genes express functionally related but nonoverlapping sets of neuroactive peptides in different tissues.
Journal of Biological Chemistry | 1998
Raj J. Advani; Hae-Rahn Bae; Jason B. Bock; Daniel S. Chao; Yee-Cheen Doung; Rytis Prekeris; Jin-San Yoo; Richard H. Scheller
SolubleN-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins of the vesicle-associated membrane protein (VAMP) and syntaxin families play a central role in vesicular trafficking through the formation of complexes between proteins present on vesicle and target membranes. Formation of these complexes is proposed to mediate aspects of the specificity of vesicle trafficking and to promote fusion of the lipid bilayers. In order to further understand the molecular mechanisms that organize membrane compartments, we have characterized seven new mammalian proteins of the VAMP and syntaxin families. The proteins are broadly expressed; however, syntaxin 13 is enriched in brain and VAMP 8 in kidney. The seven novel SNAREs localize in distinct patterns overlapping with Golgi, endosomal, or lysosomal markers. Our studies support the hypothesis that evolutionary radiation of these two gene families gave rise to sets of proteins whose differential expression and combinatorial associations define and organize the membrane compartments of cells.
Cell | 1993
Lisa A. Elferink; Michael R. Peterson; Richard H. Scheller
Proteins that are specifically localized to synaptic vesicles in the nervous system have been proposed to mediate aspects of synaptic transmission. Antibodies raised against the cytoplasmic domains of five of these proteins, vamp, rab3A, synaptophysin, synaptotagmin, and SV2, were used to investigate their function. Microinjection of monoclonal and polyclonal antibodies raised against synaptotagmin (p65), but not the other vesicle proteins, decreases K+/Ca(2+)-mediated dopamine beta-hydroxylase surface staining, a measure of regulated secretion in PC12 cells. Microinjection of a soluble fragment of synaptotagmin encompassing one of the domains homologous to the C2 regulatory region of protein kinase C, but lacking the membrane anchor, also inhibits evoked dopamine beta-hydroxylase surface staining. These results provide support for the hypothesis that synaptotagmin, a Ca(2+)- and phospholipid-binding protein, is important for regulated exocytosis in neurons.
Neuron | 1992
Michael J. Ferns; Werner Hoch; James T. Campanelli; Fabio Rupp; Zach W. Hall; Richard H. Scheller
Agrin is a component of the synaptic basal lamina that induces the clustering of acetylcholine receptors (AChRs) on muscle fibers. A region near the carboxyl terminus of the protein exists in four forms that are generated by alternative RNA splicing. All four alternatively spliced forms of agrin are active in inducing AChR clusters on rat primary and C2-derived muscle fibers. In contrast, only two forms of the protein, each containing an 8 amino acid insert, are capable of inducing clusters on myotubes of S27 cells, a C2 variant that has defective proteoglycans. These two forms are also most active in inducing clusters on chick myotubes. This pattern of differential activity suggests that RNA splicing of agrin transcripts and interactions with proteoglycans or other components of basal lamina have important roles in regulating the localization of neurotransmitter receptors at synaptic sites.
Neuron | 1993
Werner Hoch; Michael J. Ferns; James T. Campanelli; Zach W. Hall; Richard H. Scheller
Agrin is an extracellular matrix protein involved in clustering acetylcholine receptors during development of the neuromuscular junction. We have previously shown that alternative splicing at three sites generates multiple forms of rat agrin and that a novel 8 amino acid insert is the most important in determining biological activity. In the present study we have examined the expression of agrin during development with particular emphasis on determining the tissue distribution of the splicing variants at each site. Our principal observation is that the variants containing the sequence most responsible for biological activity are expressed exclusively in neural tissue and that their expression is highly regulated during development. We also show that muscle expresses less active forms and that agrin immunoreactivity during synaptogenesis is initially not limited to synaptic sites, but becomes progressively restricted to the synapse as development proceeds.