Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard H. West is active.

Publication


Featured researches published by Richard H. West.


Aerosol Science and Technology | 2009

A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates

Markus Sander; Richard H. West; Matthew Celnik; Markus Kraft

In this study the coagulation, condensation, and sintering of nanoparticles is investigated using a stochastic particle model. Each stochastic particle consists of interacting polydisperse primary particles that are connected to each other. In the model sintering occurs between each individual pair of neighboring primary particles. This is important for particles in which the range of the size of the primary particles varies significantly. The sintering time is obtained from the viscous flow model. The model is solved using a stochastic particle algorithm. The particles are represented in a binary tree that contains the connectivity as well as the degree of sintering information. Particles are forme, coagulate, sinter, and experience condensation according to known rate laws. The particle binary tree, along with it the degree of sintering, is updated after each time step according to the rates of the different processes. The stochastic particle method uses the technique of fictitious jumps and linear process deferment. The theoretical results are fitted against experimental values for the formation of SiO 2 nanoparticles and computer generated TEM pictures are presented and compared to experiments.


Journal of Physical Chemistry A | 2009

First-principles thermochemistry for silicon species in the decomposition of tetraethoxysilane.

Weerapong Phadungsukanan; Shraddha Shekar; Raphael Shirley; Markus Sander; Richard H. West; Markus Kraft

Tetraethoxysilane (TEOS) is used as a precursor in the industrial production of silica nanoparticles using thermal decomposition methods such as flame spray pyrolysis (FSP). Despite the industrial importance of this process, the current kinetic model of high-temperature decomposition of TEOS to produce intermediate silicon species and eventually form amorphous silica (R-SiO2) nanoparticles remains inadequate. This is partly due to the fact only a small proportion of the possible species is considered. This work presents the thermochemistry of practically all of the species that can exist in the early stages of the reaction mechanism. In order to ensure that all possible species are considered, the process is automated by considering all species that can be formed from the reactions that are deemed reasonable in the standard ethanol combustion model in the literature. Thermochemical data for 180 species (over 160 of which have not appeared in the literature before) are calculated using density functional theory with two different hybrid functionals, B3LYP and B97-1. The standard enthalpy of formation (DeltafH(298.15K) degrees) values for these species are calculated using isodesmic reactions. It is observed that internal rotation may be important because the barriers to rotation are reasonably low. Comparisons are then made between the rigid rotor harmonic oscillator approximation (RRHO) and the RRHO with some of the vibrational modes treated as hindered rotors. It is found that full treatment of the hindered rotors makes a significant difference to the thermochemistry and thus has an impact on equilibrium concentrations and kinetics in this system. For this reason, all of the species are treated using the hindered rotor approximation where appropriate. Finally, equilibrium calculations are performed to identify the intermediates that are likely to be most prevalent in the high-temperature industrial process. Particularly, Si(OH)4, SiH(OH)3, SiH2(OH)2, SiH3(OH), Si(OH)3(OCH3), Si(OH)2(OCH3)2, the silicon dimers (CH3)3-SiOSi(CH3)3 and SiH3OSiH3, and the smaller hydrocarbon species CH4, CO2, C2H4, and C2H6 are highlighted as the important species.


Journal of Physical Chemistry A | 2009

First-Principles Thermochemistry for the Combustion of a TiCl4 and AlCl3 Mixture

Raphael Shirley; Yaoyao Liu; Tim S. Totton; Richard H. West; Markus Kraft

AlCl(3) is added in small quantities to TiCl(4) fed to industrial reactors during the combustion synthesis of titanium dioxide nanoparticles in order to promote the rutile crystal phase. Despite the importance of this process, a detailed mechanism including AlCl(3) is still not available. This work presents the thermochemistry of many of the intermediates in the early stages of the mechanism, computed using quantum chemistry. The enthalpies of formation and thermochemical data for AlCl, AlO, AlOCl, AlOCl(2), AlO(2), AlO(2)Cl, AlOCl(3), AlO(2)Cl(2), AlO(3)ClTi, AlO(2)Cl(2)Ti, AlO(2)Cl(4)Ti, AlOCl(5)Ti, AlO(2)Cl(3)Tia (isomer-a), AlO(3)Cl(2)Ti, AlO(2)Cl(5)Ti, AlOCl(4)Ti, AlO(2)Cl(3)Tib (isomer-b), AlCl(7)Ti, AlCl(6)Ti, Al(2)Cl(6), Al(2)O(2)Cl, Al(2)O(2)Cl(3), Al(2)O(3)Cl(2), Al(2)O(2)Cl(2), Al(2)OCl(4), Al(2)O(3), and Al(2)OCl(3) were calculated using density functional theory (DFT). A full comparison between a number of methods is made for one of the important species, AlOCl, to validate the use of DFT and gauge the magnitude of errors involved with this method. Finally, equilibrium calculations are performed to try to identify which intermediates are likely to be most prevalent in the high temperature industrial process and as a first attempt to characterize the nucleation process.


Journal of Physical Chemistry B | 2013

An extensible framework for capturing solvent effects in computer generated kinetic models.

Amrit Jalan; Richard H. West; William H. Green

Detailed kinetic models provide useful mechanistic insight into a chemical system. Manual construction of such models is laborious and error-prone, which has led to the development of automated methods for exploring chemical pathways. These methods rely on fast, high-throughput estimation of species thermochemistry and kinetic parameters. In this paper, we present a methodology for extending automatic mechanism generation to solution phase systems which requires estimation of solvent effects on reaction rates and equilibria. The linear solvation energy relationship (LSER) method of Abraham and co-workers is combined with Mintz correlations to estimate ΔG(solv)°(T) in over 30 solvents using solute descriptors estimated from group additivity. Simple corrections are found to be adequate for the treatment of radical sites, as suggested by comparison with known experimental data. The performance of scaled particle theory expressions for enthalpic-entropic decomposition of ΔG(solv)°(T) is also presented along with the associated computational issues. Similar high-throughput methods for solvent effects on free-radical kinetics are only available for a handful of reactions due to lack of reliable experimental data, and continuum dielectric calculations offer an alternative method for their estimation. For illustration, we model liquid phase oxidation of tetralin in different solvents computing the solvent dependence for ROO• + ROO• and ROO• + solvent reactions using polarizable continuum quantum chemistry methods. The resulting kinetic models show an increase in oxidation rate with solvent polarity, consistent with experiment. Further work needed to make this approach more generally useful is outlined.


ChemInform | 2010

Predicting solvation energies for kinetic modeling

Amrit Jalan; Robert W. Ashcraft; Richard H. West; William H. Green

Ab initio and empirical methods for predicting solvation energies are reviewed, focusing on the challenge of predicting the solvation energies of reactive low-concentration species (and transition states) needed for kinetic models. Several rather different approaches are being pursued with success, but none of the purely a priori methods have yet achieved the accuracy needed to quantitatively predict solution-phase kinetics. Empirical methods are quite accurate at predicting the variation of a molecule’s solvation energy with changes in solvent. Some a priori approaches based on these empirical methods are discussed. Several effects which are poorly-predicted by existing a priori methods and need further work are highlighted.


ASME 2014 International Mechanical Engineering Congress and Exposition | 2014

Reduction Techniques Methods for Simplifying Complex Kinetic Systems: A General Review

Ghassan Nicolas; Fariba Seiyedzadeh Khanshan; Hameed Metghalchi; Richard H. West

The development of kinetic models to describe the time evolution of chemically reacting systems is a fundamental objective of chemical kinetics. Ideally, the most accurate approach to this problem is to include all possible species and reactions of any importance to predict, within the specified uncertainty, a wide variety of experimental data. The complexity of these detailed models grows with an increase in the number of fuel components. When the detailed kinetic model is to be coupled to transport equations, the computational tasks often become formidable due to the intrinsic presence of a wide range of time and length scales, which result in the well-known stiffness problem. Such difficulties have motivated the development of numerous model order reduction techniques during the past three decades. In this paper, the most used reduction techniques for detailed kinetic models are presented and the advantages and disadvantages of each are explained.Copyright


Combustion and Flame | 2018

The impact of roaming radicals on the combustion properties of transportation fuels

Richard H. West; C. Franklin Goldsmith

Abstract A systematic investigation on the effects of roaming radical reactions on global combustion properties for transportation fuels is presented. New software was developed that can automatically predict all the possible roaming pathways within a given chemical kinetic mechanism. This novel approach was applied to two mechanisms taken from the literature, one for heptane and one for butanol. Ignition delay times and laminar flame speeds were computed over a broad range of conditions, while testing varying degrees of roaming. As the degree of roaming is increased, the ignition delays increased, consistent with the hypothesis that roaming decreases the reactivity of the system. The percent increase in the ignition delay is strongly temperature dependent, with the largest effect seen in the negative temperature coefficient regime. Outside of this temperature range, the effect of roaming on global combustion properties is small, on the order of a few percent for ignition delays and less than a percent for flame speeds. The software that was used to create the new mechanisms and test the effects of roaming on combustion properties are freely available, with detailed tutorials that will enable it to be applied to fuels other than heptane and butanol.


Computer Physics Communications | 2016

Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms ☆

Connie W. Gao; Joshua W. Allen; William H. Green; Richard H. West


Proceedings of the Combustion Institute | 2009

Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate

Matthew Celnik; Markus Sander; Abhijeet Raj; Richard H. West; Markus Kraft


Combustion and Flame | 2009

A statistical approach to develop a detailed soot growth model using PAH characteristics

Abhijeet Raj; Matthew Celnik; Raphael Shirley; Markus Sander; Robert I. A. Patterson; Richard H. West; Markus Kraft

Collaboration


Dive into the Richard H. West's collaboration.

Top Co-Authors

Avatar

William H. Green

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Markus Kraft

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amrit Jalan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge