Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard I. Ainsworth is active.

Publication


Featured researches published by Richard I. Ainsworth.


Biomaterials | 2014

Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses

Jamieson K. Christie; Richard I. Ainsworth; Nora H. de Leeuw

Phosphate-based bioactive glasses containing fluoride ions offer the potential of a biomaterial which combines the bioactive properties of the phosphate glass and the protection from dental caries by fluoride. We conduct accurate first-principles molecular dynamics simulations of two compositions of fluorinated phosphate-based glass to assess its suitability as a biomaterial. There is a substantial amount of F-P bonding and as a result the glass network will be structurally homogeneous on medium-range length scales, without the inhomogeneities which reduce the bioactivity of other fluorinated bioactive glasses. We observe a decrease in the network connectivity with increasing F content, caused by the replacement of bridging oxygen atoms by non-bridging fluorine atoms, but this decrease is small and can be opposed by an increase in the phosphate content. We conclude that the structural changes caused by the incorporation of fluoride into phosphate-based glasses will not adversely affect their bioactivity, suggesting that fluorinated phosphate glasses offer a superior alternative to their silicate-based counterparts.


Journal of Physical Chemistry B | 2013

Nanoscale Chains Control the Solubility of Phosphate Glasses for Biomedical Applications

Jamieson K. Christie; Richard I. Ainsworth; Devis Di Tommaso; Nora H. de Leeuw

Bioactive phosphate-based glasses (PBGs) have several possible biomedical applications because of the chemical reactions they undergo with their surroundings when implanted into the body. The dissolution rate of PBGs in physiological conditions is a crucial parameter for these applications, to ensure, e.g., delivery of drugs or nutrients to the body at the correct rate. While it has been well-known that increasing the CaO content of these glasses at the expense of Na2O slows the dissolution rate, this paper provides an atomistic explanation of this for the first time. In this work, molecular dynamics simulations of five ternary P2O5-CaO-Na2O glasses reveal the structural properties at the atomic level that enhance the durability of PBGs as more Ca is added: (i) Ca binds together more fragments of the phosphate glass network than Na, (ii) Ca binds together more PO4 tetrahedra than Na, and (iii) Ca has a lower concentration of intratetrahedral phosphate bonding than Na. This behavior is rooted in the calcium ions higher charge and field strength. These results open the path to precise control and optimization of the PBG dissolution rate for specific biomedical applications.


Journal of Materials Chemistry B | 2013

Modelling the structural evolution of ternary phosphate glasses from melts to solid amorphous materials

Devis Di Tommaso; Richard I. Ainsworth; Emilia Tang; Nora H. de Leeuw

The local and medium-range structural properties of phosphate-based melts and glasses have been characterized by means of first principles (density functional theory) and classical (shell-model) molecular dynamics simulations. The structure of glasses with biomedically active molecular compositions, (P2O5)0.45(CaO)x(Na2O)0.55-x (x = 0.30, 0.35 and 0.40), have been generated using first principles molecular dynamics simulations for the full melt-and-quench procedure and the changes in the structural properties as the 3000 K melt is cooled down to room temperature have been compared extensively with those of the final glasses. The melts are characterized by a significant fraction of threefold (P3c) and fivefold (P5c) phosphorus atoms, but structural defects rapidly decrease during the cooling phase and for temperatures lower than 1800 K the system is free of under- and over-coordinated species. The analysis of the structures of the glasses at 300 K shows a prevalence of the metaphosphate Q2 and pyrophosphate Q1 species, whereas the number of Q3 units, which constitute the three-dimensional phosphate network, significantly decreases with the increase of calcium content in the glass. The radial and angular distribution functions indicate that higher calcium concentration in the glass leads to an increase of the rigidity of the phosphate tetrahedral network, which has been explained in terms of the calciums higher field strength compared to that of sodium. The structural characterization of the melts and glasses obtained from first principles simulations was used to assess and validate a recently developed interatomic shell-model forcefield for phosphate-based materials. For all three compositions, our potential model is in good agreement with the first principles data. In the glass network, the forcefield provides a very good description of the split between the shorter distances of phosphorus to non-bonded oxygen and the longer distances of the phosphorus to bonded oxygen; the phosphorus-phosphorus medium-range distribution; and the coordination environment around the Na and Ca glass modifiers. Moreover, the distribution of the Qn species in the melts and glasses is in excellent agreement with the values extracted from the first principles simulations. In contrast, simulations using standard rigid ion potentials do not provide a satisfactory description of the local short-range structure of phosphate-based glasses and are therefore less suitable to model this class of multicomponent amorphous system.


Journal of Chemical Information and Modeling | 2015

Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.

Nan Li; Richard I. Ainsworth; Bo Ding; Tingjun Hou; Wei Wang

Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of highly active anti-retroviral therapy (HAART) that block the catalytic site of HIV protease, thus preventing maturation of the HIV virion. However, with two decades of PI prescriptions in clinical practice, drug-resistant HIV mutants have now been found for all of the PI drugs. Therefore, the continuous development of new PI drugs is crucial both to combat the existing drug-resistant HIV strains and to provide treatments for future patients. Here we purpose an HIV PI drug design strategy to select candidate PIs with binding energy distributions dominated by interactions with conserved protease residues in both wild-type and various drug-resistant mutants. On the basis of this strategy, we have constructed a virtual screening pipeline including combinatorial library construction, combinatorial docking, MM/GBSA-based rescoring, and reranking on the basis of the binding energy distribution. We have tested our strategy on lopinavir by modifying its two functional groups. From an initial 751 689 candidate molecules, 18 candidate inhibitors were selected using the pipeline for experimental validation. IC50 measurements and drug resistance predictions successfully identified two ligands with both HIV protease inhibitor activity and an improved drug resistance profile on 2382 HIV mutants. This study provides a proof of concept for the integration of MM/GBSA energy analysis and drug resistance information at the stage of virtual screening and sheds light on future HIV drug design and the use of virtual screening to combat drug resistance.


Physical Chemistry Chemical Physics | 2014

On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations

Richard I. Ainsworth; Jamieson K. Christie; Nora H. de Leeuw

First-principles and classical molecular dynamics simulations of undoped and silver-doped phosphate-based glasses with 50 mol% P2O5, 0-20 mol% Ag2O, and varying amounts of Na2O and CaO have been carried out. Ag occupies a distorted local coordination with a mean Ag-O bond length of 2.5 Å and an ill-defined first coordination shell. This environment is shown to be distorted octahedral/trigonal bipyramidal. Ag-O coordination numbers of 5.42 and 5.54-5.71 are calculated for first-principles and classical methodologies respectively. A disproportionation in the medium-range phosphorus Q(n) distribution is explicitly displayed upon silver-doping via CaO substitution, approximating 2Q(2)→Q(1) + Q(3), but not on silver-doping via Na2O substitution. An accompanying increase in FWHM of the phosphorus to bridging oxygen partial pair-correlation function is strong evidence for a bulk structural mechanism associated with decreased dissolution rates with increased silver content. Experimentally, Ag2O ↔ Na2O substitution is known to decrease dissolution and we show this to be a result of Ags local bonding.


Nature Communications | 2018

Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes

Rizi Ai; Teresina Laragione; Deepa Hammaker; David L. Boyle; Andre Wildberg; Keisuke Maeshima; Emanuele Palescandolo; Vinod Krishna; David Pocalyko; John W. Whitaker; Yuchen Bai; Sunil Nagpal; Kurtis E. Bachman; Richard I. Ainsworth; Mengchi Wang; Bo Ding; Pércio S. Gulko; Wei Wang; Gary S. Firestein

Epigenetics contributes to the pathogenesis of immune-mediated diseases like rheumatoid arthritis (RA). Here we show the first comprehensive epigenomic characterization of RA fibroblast-like synoviocytes (FLS), including histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3), open chromatin, RNA expression and whole-genome DNA methylation. To address complex multidimensional relationship and reveal epigenetic regulation of RA, we perform integrative analyses using a novel unbiased method to identify genomic regions with similar profiles. Epigenomically similar regions exist in RA cells and are associated with active enhancers and promoters and specific transcription factor binding motifs. Differentially marked genes are enriched for immunological and unexpected pathways, with “Huntington’s Disease Signaling” identified as particularly prominent. We validate the relevance of this pathway to RA by showing that Huntingtin-interacting protein-1 regulates FLS invasion into matrix. This work establishes a high-resolution epigenomic landscape of RA and demonstrates the potential for integrative analyses to identify unanticipated therapeutic targets.Fibroblast-like synoviocytes (FLS) in the intimal layer of the synovium can become invasive and destroy cartilage in patients with rheumatoid arthritis (RA). Here the authors integrate a variety of epigenomic data to map the epigenome of FLS in RA and identify potential therapeutic targets.


Nature Communications | 2016

Systematic identification of protein combinations mediating chromatin looping.

Kai Zhang; Nan Li; Richard I. Ainsworth; Wei Wang

Chromatin looping plays a pivotal role in gene expression and other biological processes through bringing distal regulatory elements into spatial proximity. The formation of chromatin loops is mainly mediated by DNA-binding proteins (DBPs) that bind to the interacting sites and form complexes in three-dimensional (3D) space. Previously, identification of DBP cooperation has been limited to those binding to neighbouring regions in the proximal linear genome (1D cooperation). Here we present the first study that integrates protein ChIP-seq and Hi-C data to systematically identify both the 1D- and 3D-cooperation between DBPs. We develop a new network model that allows identification of cooperation between multiple DBPs and reveals cell-type-specific and -independent regulations. Using this framework, we retrieve many known and previously unknown 3D-cooperations between DBPs in chromosomal loops that may be a key factor in influencing the 3D organization of chromatin.


Bioinformatics | 2016

MIEC-SVM: automated pipeline for protein peptide/ligand interaction prediction

Nan Li; Richard I. Ainsworth; Meixin Wu; Bo Ding; Wei Wang

MOTIVATION MIEC-SVM is a structure-based method for predicting protein recognition specificity. Here, we present an automated MIEC-SVM pipeline providing an integrated and user-friendly workflow for construction and application of the MIEC-SVM models. This pipeline can handle standard amino acids and those with post-translational modifications (PTMs) or small molecules. Moreover, multi-threading and support to Sun Grid Engine (SGE) are implemented to significantly boost the computational efficiency. AVAILABILITY AND IMPLEMENTATION The program is available at http://wanglab.ucsd.edu/MIEC-SVM CONTACT: : [email protected] SUPPLEMENTARY INFORMATION Supplementary data available at Bioinformatics online.


G3: Genes, Genomes, Genetics | 2018

Bayesian Networks Predict Neuronal Transdifferentiation

Richard I. Ainsworth; Rizi Ai; Bo Ding; Nan Li; Kai Zhang; Wei Wang

We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes.


Journal of Materials Chemistry B | 2017

Structures and properties of phosphate-based bioactive glasses from computer simulation: a review

Jamieson K. Christie; Richard I. Ainsworth; Sergio E. Ruiz Hernandez; Nora H. de Leeuw

Phosphate-based bioactive glasses (PBGs) dissolve harmlessly in the body with a dissolution rate which depends sensitively on composition. This makes them proposed vectors for e.g. drug delivery, or other applications where an active component needs to be delivered at a therapeutically appropriate rate. Molecular dynamics (MD) simulations provide atomic-level structural information about PBG compositions. We review recent work to show that MD is an excellent tool to unravel the connections between the PBG glass composition, its atomic structure, and its dissolution rate, which can help to optimise PBGs for specific medical applications.

Collaboration


Dive into the Richard I. Ainsworth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Bo Ding

University of California

View shared research outputs
Top Co-Authors

Avatar

Nan Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Devis Di Tommaso

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Kai Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Rizi Ai

University of California

View shared research outputs
Top Co-Authors

Avatar

Andre Wildberg

University of California

View shared research outputs
Top Co-Authors

Avatar

David L. Boyle

University of California

View shared research outputs
Top Co-Authors

Avatar

Deepa Hammaker

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge