Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard I. Gregory is active.

Publication


Featured researches published by Richard I. Gregory.


Nature | 2004

The Microprocessor complex mediates the genesis of microRNAs

Richard I. Gregory; Kai Ping Yan; Govindasamy Amuthan; Thimmalah Chendrimada; Behzad Doratotaj; Neil Cooch; Ramin Shiekhattar

MicroRNAs (miRNAs) are a growing family of small non-protein-coding regulatory genes that regulate the expression of homologous target-gene transcripts. They have been implicated in the control of cell death and proliferation in flies, haematopoietic lineage differentiation in mammals, neuronal patterning in nematodes and leaf and flower development in plants. miRNAs are processed by the RNA-mediated interference machinery. Drosha is an RNase III enzyme that was recently implicated in miRNA processing. Here we show that human Drosha is a component of two multi-protein complexes. The larger complex contains multiple classes of RNA-associated proteins including RNA helicases, proteins that bind double-stranded RNA, novel heterogeneous nuclear ribonucleoproteins and the Ewings sarcoma family of proteins. The smaller complex is composed of Drosha and the double-stranded-RNA-binding protein, DGCR8, the product of a gene deleted in DiGeorge syndrome. In vivo knock-down and in vitro reconstitution studies revealed that both components of this smaller complex, termed Microprocessor, are necessary and sufficient in mediating the genesis of miRNAs from the primary miRNA transcript.


Nature Cell Biology | 2009

Many roads to maturity: microRNA biogenesis pathways and their regulation.

Julia Winter; Stephanie Jung; Sarina Keller; Richard I. Gregory; Sven Diederichs

MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development and cancer. Although their mode of action has attracted great attention, the principles governing their expression and activity are only beginning to emerge. Recent studies have introduced a paradigm shift in our understanding of the microRNA biogenesis pathway, which was previously believed to be universal to all microRNAs. Maturation steps specific to individual microRNAs have been uncovered, and these offer a plethora of regulatory options after transcription with multiple proteins affecting microRNA processing efficiency. Here we review the recent advances in knowledge of the microRNA biosynthesis pathways and discuss their impact on post-transcriptional microRNA regulation during tumour development.


Nature | 2005

TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing

Thimmaiah P. Chendrimada; Richard I. Gregory; Easwari Kumaraswamy; Jessica Norman; Neil Cooch; Kazuko Nishikura; Ramin Shiekhattar

MicroRNAs (miRNAs) are generated by a two-step processing pathway to yield RNA molecules of approximately 22 nucleotides that negatively regulate target gene expression at the post-transcriptional level. Primary miRNAs are processed to precursor miRNAs (pre-miRNAs) by the Microprocessor complex. These pre-miRNAs are cleaved by the RNase III Dicer to generate mature miRNAs that direct the RNA-induced silencing complex (RISC) to messenger RNAs with complementary sequence. Here we show that TRBP (the human immunodeficiency virus transactivating response RNA-binding protein), which contains three double-stranded, RNA-binding domains, is an integral component of a Dicer-containing complex. Biochemical analysis of TRBP-containing complexes revealed the association of Dicer–TRBP with Argonaute 2 (Ago2), the catalytic engine of RISC. The physical association of Dicer–TRBP and Ago2 was confirmed after the isolation of the ternary complex using Flag-tagged Ago2 cell lines. In vitro reconstitution assays demonstrated that TRBP is required for the recruitment of Ago2 to the small interfering RNA (siRNA) bound by Dicer. Knockdown of TRBP results in destabilization of Dicer and a consequent loss of miRNA biogenesis. Finally, depletion of the Dicer–TRBP complex via exogenously introduced siRNAs diminished RISC-mediated reporter gene silencing. These results support a role of the Dicer–TRBP complex not only in miRNA processing but also as a platform for RISC assembly.


Cell | 2005

Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing

Richard I. Gregory; Thimmaiah P. Chendrimada; Neil Cooch; Ramin Shiekhattar

RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demonstrate that this complex can cleave target RNA using precursor microRNA (pre-miRNA) hairpin as the source of siRNA. Although RISC can also utilize duplex siRNA, it displays a nearly 10-fold greater activity using the pre-miRNA Dicer substrate. RISC distinguishes the guide strand of the siRNA from the passenger strand and specifically incorporates the guide strand. Importantly, ATP is not required for miRNA processing, RISC assembly, or multiple rounds of target-RNA cleavage. These results define the composition of RISC and demonstrate that miRNA processing and target-RNA cleavage are coupled.


Science | 2008

Selective Blockade of MicroRNA Processing by Lin28

Srinivas R. Viswanathan; George Q. Daley; Richard I. Gregory

MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked posttranscriptionally in embryonic stem cells, embryonal carcinoma cells, and primary tumors. Here we show that Lin28, a developmentally regulated RNA binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we found that Lin28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin28 as a negative regulator of miRNA biogenesis and suggest that Lin28 may play a central role in blocking miRNA-mediated differentiation in stem cells and in certain cancers.


Cell | 2011

The Lin28/let-7 axis regulates glucose metabolism

Hao Zhu; Ng Shyh-Chang; Ayellet V. Segrè; Gen Shinoda; Samar P. Shah; William S. Einhorn; Ayumu Takeuchi; Jesse M. Engreitz; John P. Hagan; Michael G. Kharas; Achia Urbach; James E. Thornton; Robinson Triboulet; Richard I. Gregory; David Altshuler; George Q. Daley

The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism.


Cancer Research | 2005

MicroRNA Biogenesis and Cancer

Richard I. Gregory; Ramin Shiekhattar

MicroRNAs (miRNA) are a recently discovered family of short non-protein-coding RNAs that negatively regulate gene expression. Recent studies of miRNAs highlight a requirement for cell viability. Posttranscriptional silencing of target genes by miRNAs occurs either by targeting specific cleavage of homologous mRNAs, or by targeting specific inhibition of protein synthesis. We recently identified a multisubunit protein complex termed Microprocessor that is necessary and sufficient for processing miRNA precursor RNAs. Microprocessor contains Drosha, an RNase III endonuclease, and DGCR8, a gene deleted in DiGeorge syndrome. We consider recent findings that link miRNA perturbation to cancer.


Molecular Cell | 2013

The Imprinted H19 LncRNA Antagonizes Let-7 MicroRNAs

Amanda N. Kallen; Xiao-Bo Zhou; Jie Xu; Chong Qiao; Jing Ma; Lei Yan; Lingeng Lu; Chaochun Liu; Jae-Sung Yi; Haifeng Zhang; Wang Min; Anton M. Bennett; Richard I. Gregory; Ye Ding; Yingqun Huang

Abundantly expressed in fetal tissues and adult muscle, the developmentally regulated H19 long noncoding RNA (lncRNA) has been implicated in human genetic disorders and cancer. However, how H19 acts to regulate gene function has remained enigmatic, despite the recent implication of its encoded miR-675 in limiting placental growth. We noted that vertebrate H19 harbors both canonical and noncanonical binding sites for the let-7 family of microRNAs, which plays important roles in development, cancer, and metabolism. Using H19 knockdown and overexpression, combined with in vivo crosslinking and genome-wide transcriptome analysis, we demonstrate that H19 modulates let-7 availability by acting as a molecular sponge. The physiological significance of this interaction is highlighted in cultures in which H19 depletion causes precocious muscle differentiation, a phenotype recapitulated by let-7 overexpression. Our results reveal an unexpected mode of action of H19 and identify this lncRNA as an important regulator of the major let-7 family of microRNAs.


Nature | 2007

MicroRNA silencing through RISC recruitment of eIF6

Thimmaiah P. Chendrimada; Kenneth J. Finn; Xinjun Ji; David Baillat; Richard I. Gregory; Stephen A. Liebhaber; Amy E. Pasquinelli; Ramin Shiekhattar

MicroRNAs (miRNAs) are a class of small RNAs that act post-transcriptionally to regulate messenger RNA stability and translation. To elucidate how miRNAs mediate their repressive effects, we performed biochemical and functional assays to identify new factors in the miRNA pathway. Here we show that human RISC (RNA-induced silencing complex) associates with a multiprotein complex containing MOV10—which is the homologue of Drosophila translational repressor Armitage—and proteins of the 60S ribosome subunit. Notably, this complex contains the anti-association factor eIF6 (also called ITGB4BP or p27BBP), a ribosome inhibitory protein known to prevent productive assembly of the 80S ribosome. Depletion of eIF6 in human cells specifically abrogates miRNA-mediated regulation of target protein and mRNA levels. Similarly, depletion of eIF6 in Caenorhabditis elegans diminishes lin-4 miRNA-mediated repression of the endogenous LIN-14 and LIN-28 target protein and mRNA levels. These results uncover an evolutionarily conserved function of the ribosome anti-association factor eIF6 in miRNA-mediated post-transcriptional silencing.


Nature Structural & Molecular Biology | 2009

Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells

John P. Hagan; Elena Piskounova; Richard I. Gregory

Lin28 and Lin28B, two developmentally regulated RNA-binding proteins and likely proto-oncogenes, selectively inhibit the maturation of let-7 family microRNAs (miRNAs) in embryonic stem cells and certain cancer cell lines. Moreover, let-7 precursors (pre–let-7) were previously found to be terminally uridylated in a Lin28-dependent fashion. Here we identify Zcchc11 (zinc finger, CCHC domain containing 11) as the 3′ terminal uridylyl transferase (TUTase) responsible for Lin28-mediated pre–let-7 uridylation and subsequent blockade of let-7 processing in mouse embryonic stem cells. We demonstrate that Zcchc11 activity is UTP-dependent, selective for let-7 and recruited by Lin28. Furthermore, knockdown of either Zcchc11 or Lin28, or overexpression of a catalytically inactive TUTase, relieves the selective inhibition of let-7 processing and leads to the accumulation of mature let-7 miRNAs and repression of let-7 target reporter genes. Our results establish a role for Zcchc11-catalyzed pre–let-7 uridylation in the control of miRNA biogenesis.

Collaboration


Dive into the Richard I. Gregory's collaboration.

Top Co-Authors

Avatar

Robinson Triboulet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Du

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Shuibin Lin

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Feil

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Elena Piskounova

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David A. Williams

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge