Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Colonno is active.

Publication


Featured researches published by Richard J. Colonno.


Nature | 2010

Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect

Min Gao; Richard E. Nettles; Makonen Belema; Lawrence B. Snyder; Van N. Nguyen; Robert A. Fridell; Michael H. Serrano-Wu; David R. Langley; Jin-Hua Sun; Donald R. O'Boyle; Julie A. Lemm; Chunfu Wang; Jay O. Knipe; Caly Chien; Richard J. Colonno; Dennis M. Grasela; Nicholas A. Meanwell; Lawrence G. Hamann

The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-α and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC50) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log10 reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.


Hepatology | 2009

Long‐term monitoring shows hepatitis B virus resistance to entecavir in nucleoside‐naïve patients is rare through 5 years of therapy

Daniel J. Tenney; Ronald E. Rose; Carl J. Baldick; Kevin A. Pokornowski; Betsy J. Eggers; Jie Fang; Michael J. Wichroski; Dong Xu; Joanna Yang; Richard Wilber; Richard J. Colonno

Patients with chronic hepatitis B virus (HBV) infection who develop antiviral resistance lose benefits of therapy and may be predisposed to further resistance. Entecavir (ETV) resistance (ETVr) results from HBV reverse transcriptase substitutions at positions T184, S202, or M250, which emerge in the presence of lamivudine (LVD) resistance substitutions M204I/V ± L180M. Here, we summarize results from comprehensive resistance monitoring of patients with HBV who were continuously treated with ETV for up to 5 years. Monitoring included genotypic analysis of isolates from all patients at baseline and when HBV DNA was detectable by polymerase chain reaction (≥300 copies/mL) from Years 1 through 5. In addition, genotyping was performed on isolates from patients experiencing virologic breakthrough (≥1 log10 rise in HBV DNA). In vitro phenotypic ETV susceptibility was determined for virologic breakthrough isolates, and for HBV containing novel substitutions emerging during treatment. The results over 5 years of therapy showed that in nucleoside‐naïve patients, the cumulative probability of genotypic ETVr and genotypic ETVr associated with virologic breakthrough was 1.2% and 0.8%, respectively. In contrast, a reduced barrier to resistance was observed in LVD‐refractory patients, as the LVD resistance substitutions, a partial requirement for ETVr, preexist, resulting in a 5‐year cumulative probability of genotypic ETVr and genotypic ETVr associated with breakthrough of 51% and 43%, respectively. Importantly, only four patients who achieved <300 copies/mL HBV DNA subsequently developed ETVr. Conclusion: Long‐term monitoring showed low rates of resistance in nucleoside‐naïve patients during 5 years of ETV therapy, corresponding with potent viral suppression and a high genetic barrier to resistance. These findings support ETV as a primary therapy that enables prolonged treatment with potent viral suppression and minimal resistance. (HEPATOLOGY 2009.)


Antimicrobial Agents and Chemotherapy | 2004

Clinical Emergence of Entecavir-Resistant Hepatitis B Virus Requires Additional Substitutions in Virus Already Resistant to Lamivudine

Daniel J. Tenney; S. M. Levine; R. E. Rose; Ann W. Walsh; S. Weinheimer; L. Discotto; M. Plym; Kevin A. Pokornowski; C. F. Yu; Peter William Angus; Anna Ayres; Angeline Bartholomeusz; William Sievert; Geoff Thompson; Nadia Warner; Stephen Locarnini; Richard J. Colonno

ABSTRACT Entecavir (ETV) exhibits potent antiviral activity in patients chronically infected with wild-type or lamivudine (3TC)-resistant (3TCr) hepatitis B virus (HBV). Among the patients treated in phase II ETV clinical trials, two patients for whom previous therapies had failed exhibited virologic breakthrough while on ETV. Isolates from these patients (arbitrarily designated patients A and B) were analyzed genotypically for emergent substitutions in HBV reverse transcriptase (RT) and phenotypically for reduced susceptibility in cultures and in HBV polymerase assays. After 54 weeks of 3TC therapy, patient A (AI463901-A) received 0.5 mg of ETV for 52 weeks followed by a combination of ETV and 100 mg of 3TC for 89 weeks. Viral rebound occurred at 133 weeks after ETV was started. The 3TCr RT substitutions rtV173L, rtL180M, and rtM204V were present at study entry, and the additional substitutions rtI169T and rtM250V emerged during ETV-3TC combination treatment. Reduced ETV susceptibility in vitro required the rtM250V substitution in addition to the 3TCr substitutions. For liver transplant patient B (AI463015-B), previous famciclovir, ganciclovir, foscarnet, and 3TC therapies had failed, and RT changes rtS78S/T, rtV173L, rtL180M, rtT184S, and rtM204V were present at study entry. Viral rebound occurred after 76 weeks of therapy with ETV at 1.0 mg, with the emergence of rtT184G, rtI169T, and rtS202I substitutions within the preexisting 3TCr background. Reduced susceptibility in vitro was highest when both the rtT184G and the rtS202I changes were combined with the 3TCr substitutions. In summary, infrequent ETV resistance can emerge during prolonged therapy, with selection of additional RT substitutions within a 3TCr HBV background, leading to reduced ETV susceptibility and treatment failure.


Hepatology | 2006

Entecavir resistance is rare in nucleoside naïve patients with hepatitis B

Richard J. Colonno; Ronald E. Rose; Carl J. Baldick; Steven Levine; Kevin A. Pokornowski; Cheng F. Yu; Ann W. Walsh; Jie Fang; Mayla Hsu; Charles E. Mazzucco; Betsy J. Eggers; Sharon Zhang; Mary Jane Plym; Kenneth S. Klesczewski; Daniel J. Tenney

Comprehensive monitoring of genotypic and phenotypic antiviral resistance was performed on 673 entecavir (ETV)‐treated nucleoside naïve hepatitis B virus (HBV) patients. ETV reduced HBV DNA levels to undetectable by PCR (<300 copies/mL, <57 IU/mL) in 91% of hepatitis B e antigen (HBeAg)‐positive and ‐negative patients by Week 96. Thirteen percent (n = 88) of the comparator lamivudine (LVD)‐treated patients experienced a virologic rebound (≥1 log increase from nadir by PCR) in the first year, with 74% of these having LVD resistance (LVDr) substitutions evident. In contrast, only 3% (n = 22) of ETV‐treated patients exhibited virologic rebound by Week 96. Three ETV rebounds were attributable to LVDr virus present at baseline, with one having a S202G ETV resistance (ETVr) substitution emerge at Week 48. None of the other rebounding patients had emerging genotypic resistance or loss of ETV susceptibility. Genotyping all additional ETV patients with PCR‐detectable HBV DNA at Weeks 48, 96, or end of dosing identified seven additional patients with LVDr substitutions, including one with simultaneous emergence of LVDr/ETVr. Generally, ETV patients with LVDr were detectable at baseline (8/10) and most subsequently achieved undetectable HBV DNA levels on ETV therapy (7/10). No other emerging substitutions identified decreased ETV susceptibility. In conclusion, ETVr emergence in ETV‐treated nucleoside naïve patients over a 2‐year period is rare, occurring in two patients with LVDr variants. These findings suggest that the rapid, sustained suppression of HBV replication, combined with a requirement for multiple substitutions, creates a high genetic barrier to ETVr in nucleoside naïve patients. (HEPATOLOGY 2006;44:1656–1665.)


Nature | 2005

Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion

Ronald S. Veazey; Per Johan Klasse; Susan M. Schader; Qinxue Hu; Thomas J. Ketas; Min Lu; Preston A. Marx; Jason Dufour; Richard J. Colonno; Robin Shattock; Martin S. Springer; John P. Moore

Human immunodeficiency virus type 1 (HIV-1) continues to spread, principally by heterosexual sex, but no vaccine is available. Hence, alternative prevention methods are needed to supplement educational and behavioural-modification programmes. One such approach is a vaginal microbicide: the application of inhibitory compounds before intercourse. Here, we have evaluated the microbicide concept using the rhesus macaque ‘high dose’ vaginal transmission model with a CCR5-receptor-using simian–human immunodeficiency virus (SHIV-162P3) and three compounds that inhibit different stages of the virus–cell attachment and entry process. These compounds are BMS-378806, a small molecule that binds the viral gp120 glycoprotein and prevents its attachment to the CD4 and CCR5 receptors, CMPD167, a small molecule that binds to CCR5 to inhibit gp120 association, and C52L, a bacterially expressed peptide inhibitor of gp41-mediated fusion. In vitro, all three compounds inhibit infection of T cells and cervical tissue explants, and C52L acts synergistically with CMPD167 or BMS-378806 to inhibit infection of cell lines. In vivo, significant protection was achieved using each compound alone and in combinations. CMPD167 and BMS-378806 were protective even when applied 6 h before challenge.


Journal of Virology | 2000

De Novo Initiation of RNA Synthesis by the RNA-Dependent RNA Polymerase (NS5B) of Hepatitis C Virus

Guangxiang Luo; Robert Hamatake; Danielle M. Mathis; Jason Racela; Karen Rigat; Julie A. Lemm; Richard J. Colonno

ABSTRACT Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.


Antimicrobial Agents and Chemotherapy | 2002

Efficacies of Entecavir against Lamivudine-Resistant Hepatitis B Virus Replication and Recombinant Polymerases In Vitro

Steven Levine; Dennis Hernandez; G. Yamanaka; Sharon Zhang; Ronald E. Rose; S. Weinheimer; Richard J. Colonno

ABSTRACT Entecavir (ETV) is a potent and selective inhibitor of hepatitis B virus (HBV) replication in vitro and in vivo that is currently in clinical trials for the treatment of chronic HBV infections. A major limitation of the current HBV antiviral therapy, lamivudine (3TC), is the emergence of drug-resistant HBV in a majority of treated patients due to specific mutations in the nucleotide binding site of HBV DNA polymerase (HBV Pol). To determine the effects of 3TC resistance mutations on inhibition by ETV triphosphate (ETV-TP), a series of in vitro studies were performed. The inhibition of wild-type and 3TC-resistant HBV Pol by ETV-TP was measured using recombinant HBV nucleocapsids, and compared to that of 3TC-TP. These enzyme inhibition studies demonstrated that ETV-TP is a highly potent inhibitor of wild-type HBV Pol and is 100- to 300-fold more potent than 3TC-TP against 3TC-resistant HBV Pol. Cell culture assays were used to gauge the potential for antiviral cross-resistance of 3TC-resistant mutants to ETV. Results demonstrated that ETV inhibited the replication of 3TC-resistant HBV, but 20- to 30-fold higher concentrations were required. To gain further perspective regarding the potential therapeutic use of ETV, its phosphorylation was examined in hepatoma cells treated with extracellular concentrations representative of drug levels in plasma in ETV-treated patients. At these concentrations, intracellular ETV-TP accumulated to levels expected to inhibit the enzyme activity of both wild-type and 3TC-resistant HBV Pol. These findings are predictive of potent antiviral activity of ETV against both wild-type and 3TC-resistant HBV.


The Journal of Infectious Diseases | 2004

Identification of I50L as the Signature Atazanavir (ATV)-Resistance Mutation in Treatment-Naive HIV-1-Infected Patients Receiving ATV-Containing Regimens

Richard J. Colonno; Ronald E. Rose; Colin McLaren; Alexandra Thiry; Neil T. Parkin; Jacques Friborg

Atazanavir (ATV) is a once-daily human immunodeficiency virus (HIV) protease inhibitor (PI) shown to be effective and well tolerated. ATV has a distinct resistance profile relative to other PIs, with susceptibility maintained against 86% of isolates resistant to 1-2 PIs. Clinical isolates obtained from PI-naive patients designated as experiencing virologic failure while receiving ATV-containing regimens contained a unique isoleucine-to-leucine substitution at amino acid residue 50 (I50L) of the HIV-1 protease. The I50L substitution, observed in all isolates exhibiting phenotypic resistance to ATV, emerged in a variety of different backgrounds and was most frequently accompanied by A71V, K45R, and/or G73S. Viruses containing an I50L substitution were growth impaired, displayed ATV-specific resistance, and had increased susceptibilities (</=0.4 of reference strain) to other PIs. Comparison of viruses bearing I50L with those bearing I50V revealed specific resistance to ATV and amprenavir, respectively, with no evidence of cross-resistance. The unique I50L substitution is the signature mutation for resistance to ATV.


The Journal of Infectious Diseases | 2001

Long-Term Entecavir Treatment Results in Sustained Antiviral Efficacy and Prolonged Life Span in the Woodchuck Model of Chronic Hepatitis Infection

Richard J. Colonno; Eugene V. Genovesi; Ivette Medina; Lucinda Lamb; Stephen K. Durham; Meei-Li Huang; Lawrence Corey; Margaret Littlejohn; Steven Locarnini; Bud C. Tennant; Burt Rose; Junius M. Clark

Entecavir (ETV) is a guanosine nucleoside analogue with potent antiviral efficacy in woodchucks chronically infected with woodchuck hepatitis virus. To explore the consequences of prolonged virus suppression, woodchucks received ETV orally for 8 weeks and then weekly for 12 months. Of the 6 animals withdrawn from therapy and monitored for an additional 28 months, 3 had a sustained antiviral response and had no evidence of hepatocellular carcinoma (HCC). Of the 6 animals that continued on a weekly ETV regimen for an additional 22 months, 4 exhibited serum viral DNA levels near the lower limit of detection for >2 years and had no evidence of HCC. Viral antigens and covalently closed circular DNA levels in liver samples were significantly reduced in all animals. ETV was well tolerated, and there was no evidence of resistant variants. On the basis of historical data, long-term ETV treatment appeared to significantly prolong the life of treated animals and delay the emergence of HCC.


Bioorganic & Medicinal Chemistry Letters | 1997

BMS-200475, a novel carbocyclic 2′-deoxyguanosine analog with potent and selective anti-hepatitis B virus activity in vitro

Gregory S. Bisacchi; S.T. Chao; C. Bachard; Jean-Paul Daris; S. Innaimo; Glenn Anthony Jacobs; O. Kocy; Philippe Lapointe; Alain Martel; Z. Merchant; William A. Slusarchyk; J.E. Sundeen; M.G. Young; Richard J. Colonno; Robert Zahler

BMS-200475, a novel carbocyclic analog of 2′-deoxyguanosine, is a potent inhibitor of hepatitis B virus in vitro (ED50 = 3 nM) with relatively low cytotoxicity (CC50 = 21–120 μM). A practical 10-step asymmetric synthesis was developed affording BMS-200475 in 18% overall chemical yield and >99% optical purity. The enantiomer of BMS-200475 as well as the adenine, thymine, and iodouracil analogs are much less active.

Collaboration


Dive into the Richard J. Colonno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge