Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. D'Andrea is active.

Publication


Featured researches published by Richard J. D'Andrea.


Current Biology | 2000

An oncogenic role of sphingosine kinase

Pu Xia; Jennifer R. Gamble; Lijun Wang; Stuart M. Pitson; Paul A.B. Moretti; Binks W. Wattenberg; Richard J. D'Andrea; Mathew A. Vadas

Sphingosine kinase (SphK) is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). S1P/SphK has been implicated as a signalling pathway to regulate diverse cellular functions [1-3], including cell growth, proliferation and survival [4-8]. We report that cells overexpressing SphK have increased enzymatic activity and acquire the transformed phenotype, as determined by focus formation, colony growth in soft agar and the ability to form tumours in NOD/SCID mice. This is the first demonstration that a wild-type lipid kinase gene acts as an oncogene. Using a chemical inhibitor of SphK, or an SphK mutant that inhibits enzyme activation, we found that SphK activity is involved in oncogenic H-Ras-mediated transformation, suggesting a novel signalling pathway for Ras activation. The findings not only point to a new signalling pathway in transformation but also to the potential of SphK inhibitors in cancer therapy.


Nature Genetics | 2011

Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia

Christopher N. Hahn; Chan Eng Chong; Catherine L. Carmichael; Ella J. Wilkins; Peter J. Brautigan; Xiaochun Li; Milena Babic; Ming Lin; Amandine Carmagnac; Young Koung Lee; Chung H. Kok; Lucia Gagliardi; Kathryn Friend; Paul G. Ekert; Carolyn M. Butcher; Anna L. Brown; Ian D. Lewis; L. Bik To; Andrew E. Timms; Jan Storek; Sarah Moore; Meryl Altree; Robert Escher; Peter Bardy; Graeme Suthers; Richard J. D'Andrea; Marshall S. Horwitz; Hamish S. Scott

We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.


Journal of Biological Chemistry | 2000

Expression of a Catalytically Inactive Sphingosine Kinase Mutant Blocks Agonist-induced Sphingosine Kinase Activation A DOMINANT-NEGATIVE SPHINGOSINE KINASE

Stuart M. Pitson; Paul A.B. Moretti; Julia R. Zebol; Pu Xia; Jennifer R. Gamble; Mathew A. Vadas; Richard J. D'Andrea; Binks W. Wattenberg

Sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a lipid messenger that plays an important role in a variety of mammalian cell processes, including inhibition of apoptosis and stimulation of cell proliferation. Basal levels of S1P in cells are generally low but can increase rapidly when cells are exposed to various agonists through rapid and transient activation of SK activity. To date, elucidation of the exact signaling pathways affected by these elevated S1P levels has relied on the use of SK inhibitors that are known to have direct effects on other enzymes in the cell. Furthermore, these inhibitors block basal SK activity, which is thought to have a housekeeping function in the cell. To produce a specific inhibitor of SK activation we sought to generate a catalytically inactive, dominant-negative SK. This was accomplished by site-directed mutagenesis of Gly82 to Asp of the human SK, a residue identified through sequence similarity to the putative catalytic domain of diacylglycerol kinase. This mutant had no detectable SK activity when expressed at high levels in HEK293T cells. Activation of endogenous SK activity by tumor necrosis factor-α (TNFα), interleukin-1β, and phorbol esters in HEK293T cells was blocked by expression of this inactive sphingosine kinase (hSKG82D). Basal SK activity was unaffected by expression of hSKG82D. Expression of hSKG82D had no effect on TNFα-induced activation of protein kinase C and sphingomyelinase activities. Thus, hSKG82D acts as a specific dominant-negative SK to block SK activation. This discovery provides a powerful tool for the elucidation of the exact signaling pathways affected by elevated S1P levels following SK activation. To this end we have employed the dominant-negative SK to demonstrate that TNFα activation of extracellular signal-regulated kinases 1 and 2 (ERK1,2) is dependent on SK activation.


Journal of Biological Chemistry | 1999

Cloning, Characterization, and Chromosomal Location of a Novel Human K+-Cl− Cotransporter

Richard J. D'Andrea; J. Furze; J. Crawford; E. Woollatt; Grant R. Sutherland; Mathew A. Vadas; Jennifer R. Gamble

Differential display polymerase chain reaction has been used to isolate genes regulated in vascular endothelial cells by the angiogenic factor vascular endothelial cell growth factor (VEGF). Analysis of one of the bands consistently up-regulated by VEGF led us to the identification of a cDNA from a human umbilical vein endothelial cell library that is 77% identical to the human K+-Cl− cotransporter1 (KCC1). We have referred to the predicted protein as K+-Cl−cotransporter 3 (KCC3). Hydrophobicity analysis of the KCC3 amino acid sequence showed an almost identical pattern to KCC1, suggesting 12 membrane-spanning segments, a large extracellular loop with potentialN-glycosylation sites, and cytoplasmic N- and C-terminal regions. The KCC3 mRNA was highly expressed in brain, heart, skeletal muscle, and kidney, showing a distinct pattern and size from KCC1 and KCC2. The KCC3 mRNA level in endothelial cells increased on treatment with VEGF and decreased with the proinflammatory cytokine tumor necrosis factor α, whereas KCC1 mRNA levels remained unchanged. Stable overexpression of KCC3 cDNA in HEK293 cells produced a glycoprotein of approximately 150 kDa, which was reduced to 120 kDa by glycosidase digestion. An increased initial uptake rate of86Rb was seen in clones with high KCC3 expression, which was dependent on extracellular Cl− but not Na+and was inhibitable by the loop diuretic agent furosemide. The KCC3 genomic localization was shown to be 15q13 by fluorescence in situ hybridization. Radiation hybrid analysis placed KCC3 within an area associated with juvenile myoclonic epilepsy. These results suggest KCC3 is a new member of the KCC family that is under distinct regulation from KCC1.


Journal of Immunology | 2010

Genome-Wide Identification of Human FOXP3 Target Genes in Natural Regulatory T Cells

Timothy J. Sadlon; Bridget Gabrielle Wilkinson; Stephen Pederson; Cheryl Y. Brown; Suzanne Bresatz; Tessa Gargett; Elizabeth Melville; Kaimen Peng; Richard J. D'Andrea; Gary G Glonek; Gregory J. Goodall; Heddy Zola; M. Frances Shannon; Simon C. Barry

The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3+ Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25+FOXP3+ Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.


Stem Cells | 2004

BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor.

Timothy J. Sadlon; Ian D. Lewis; Richard J. D'Andrea

Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self‐renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM‐ and CB‐derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donorpopulation.


Blood Cancer Journal | 2014

Dual epigenetic targeting with panobinostat and azacitidine in acute myeloid leukemia and high-risk myelodysplastic syndrome.

Peter J. Tan; Andrew Wei; Sridurga Mithraprabhu; Nicholas James Cummings; Hong Bin Liu; Michelle Perugini; Kerry D Reed; Sharon Avery; Sushrut Patil; Patricia A. Walker; Peter Mollee; Andrew Grigg; Richard J. D'Andrea; Anthony E. Dear; Andrew Spencer

Therapeutic options are limited for elderly patients with acute myeloid leukemia (AML). A phase Ib/II study was undertaken to evaluate the maximum-tolerated dose (MTD) and preliminary efficacy of the pan-histone deacetylase inhibitor panobinostat (LBH589) in combination with azacitidine in patients with AML or high-risk myelodysplastic syndrome (MDS) naïve to intensive chemotherapy. Thirty-nine patients (AML=29, MDS=10) received azacitidine 75 mg/m2 subcutaneously (days 1–5) and oral panobinostat (starting on day 5, thrice weekly for seven doses) in 28-day cycles until toxicity or disease progression. Dose-limiting toxicities during the phase Ib stage were observed in 0/4 patients receiving 10 mg panobinostat, in 1/7 patients (fatigue) receiving 20 mg, in 1/6 patients (fatigue) receiving 30 mg and in 4/5 patients (fatigue, syncope, hyponatremia and somnolence) receiving 40 mg. In phase II, an additional 17 patients received panobinostat at a MTD of 30 mg. The overall response rate (ORR=CR+CRi+PR) in patients with AML was 31% (9/29) and that in patients with MDS was 50% (5/10). After a median follow-up of 13 months, the median overall survival was 8 and 16 months in patients with AML and MDS, respectively. Increased histone H3 and H4 acetylation was a useful early biomarker of clinical response. Combining panobinostat with azacitidine was tolerable and clinically active in high-risk MDS/AML patients, warranting further exploration.


Experimental Hematology | 2000

A model for assembly and activation of the GM-CSF, IL-3 and IL-5 receptors: Insights from activated mutants of the common β subunit

Richard J. D'Andrea; Thomas J. Gonda

Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (hbeta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of hbeta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of hbeta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states.


Nature Medicine | 2016

Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia

Sheng Li; Francine E. Garrett-Bakelman; Stephen S. Chung; Mathijs A. Sanders; Todd Hricik; Franck Rapaport; Jay Patel; Richard Dillon; Priyanka Vijay; Anna L. Brown; Alexander E. Perl; Joy Cannon; Lars Bullinger; Selina M. Luger; Michael W. Becker; Ian D. Lewis; L. B. To; Ruud Delwel; Bob Löwenberg; Hartmut Döhner; Konstanze Döhner; Monica L. Guzman; Duane C. Hassane; Gail J. Roboz; David Grimwade; Peter J. M. Valk; Richard J. D'Andrea; Martin Carroll; Christopher Y. Park; Donna Neuberg

Genetic heterogeneity contributes to clinical outcome and progression of most tumors, but little is known about allelic diversity for epigenetic compartments, and almost no data exist for acute myeloid leukemia (AML). We examined epigenetic heterogeneity as assessed by cytosine methylation within defined genomic loci with four CpGs (epialleles), somatic mutations, and transcriptomes of AML patient samples at serial time points. We observed that epigenetic allele burden is linked to inferior outcome and varies considerably during disease progression. Epigenetic and genetic allelic burden and patterning followed different patterns and kinetics during disease progression. We observed a subset of AMLs with high epiallele and low somatic mutation burden at diagnosis, a subset with high somatic mutation and lower epiallele burdens at diagnosis, and a subset with a mixed profile, suggesting distinct modes of tumor heterogeneity. Genes linked to promoter-associated epiallele shifts during tumor progression showed increased single-cell transcriptional variance and differential expression, suggesting functional impact on gene regulation. Thus, genetic and epigenetic heterogeneity can occur with distinct kinetics likely to affect the biological and clinical features of tumors.


Blood | 2016

Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies

Maya Lewinsohn; Anna L. Brown; Luke M. Weinel; Connie Phung; George Rafidi; Ming K. Lee; Andreas W. Schreiber; Jinghua Feng; Milena Babic; Chan Eng Chong; Young Kyung Lee; Agnes S. M. Yong; Graeme Suthers; Nicola Poplawski; Meryl Altree; Kerry Phillips; Louise Jaensch; Miriam Fine; Richard J. D'Andrea; Ian D. Lewis; Bruno C. Medeiros; Daniel A. Pollyea; Mary Claire King; Tom Walsh; Siobán B. Keel; Akiko Shimamura; Lucy A. Godley; Christopher N. Hahn; Jane E. Churpek; Hamish S. Scott

Recently our group and others have identified DDX41 mutations both as germ line and acquired somatic mutations in families with multiple cases of late onset myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML), suggesting that DDX41 acts as a tumor suppressor. To determine whether novel DDX41 mutations could be identified in families with additional types of hematologic malignancies, our group screened two cohorts of families with a diverse range of hematologic malignancy subtypes. Among 289 families, we identified nine (3%) with DDX41 mutations. As previously observed, MDS and AML were the most common malignancies, often of the erythroblastic subtype, and 1 family displayed early-onset follicular lymphoma. Five novel mutations were identified, including missense mutations within important functional domains and start-loss and splicing mutations predicted to result in truncated proteins. We also show that most asymptomatic mutation carriers have normal blood counts until malignancy develops. This study expands both the mutation and phenotypic spectra observed in families with germ line DDX41 mutations. With an increasing number of both inherited and acquired mutations in this gene being identified, further study of how DDX41 disruption leads to hematologic malignancies is critical.

Collaboration


Dive into the Richard J. D'Andrea's collaboration.

Top Co-Authors

Avatar

Anna L. Brown

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Ian D. Lewis

Royal Adelaide Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Perugini

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar

Angel F. Lopez

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamish S. Scott

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bardy

Royal Adelaide Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul A.B. Moretti

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge