Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Fish is active.

Publication


Featured researches published by Richard J. Fish.


BMC Molecular Biology | 2004

Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors

Richard J. Fish; Egbert K. O. Kruithof

BackgroundRNA interference (RNAi) can potently reduce target gene expression in mammalian cells and is in wide use for loss-of-function studies. Several recent reports have demonstrated that short double-stranded RNAs (dsRNAs), used to mediate RNAi, can also induce an interferon-based response resulting in changes in the expression of many interferon-responsive genes. Off-target gene silencing has also been described, bringing into question the validity of certain RNAi-based approaches for studying gene function. We have targeted the plasminogen activator inhibitor-2 (PAI-2 or SERPINB2) mRNA using lentiviral vectors for delivery of U6 promoter-driven PAI-2-targeted short hairpin RNA (shRNA) expression. PAI-2 is reported to have anti-apoptotic activity, thus reduction of endogenous expression may be expected to make cells more sensitive to programmed cell death.ResultsAs expected, we encountered a cytotoxic phenotype when targeting the PAI-2 mRNA with vector-derived shRNA. However, this predicted phenotype was a potent non-specific effect of shRNA expression, as functional overexpression of the target protein failed to rescue the phenotype. By decreasing the shRNA length or modifying its sequence we maintained PAI-2 silencing and reduced, but did not eliminate, cytotoxicity. ShRNA of 21 complementary nucleotides (21 mers) or more increased expression of the oligoadenylate synthase-1 (OAS1) interferon-responsive gene. 19 mer shRNA had no effect on OAS1 expression but long-term selective pressure on cell growth was observed. By lowering lentiviral vector titre we were able to reduce both expression of shRNA and induction of OAS1, without a major impact on the efficacy of gene silencing.ConclusionsOur data demonstrate a rapid cytotoxic effect of shRNAs expressed in human tumor cell lines. There appears to be a cut-off of 21 complementary nucleotides below which there is no interferon response while target gene silencing is maintained. Cytotoxicity or OAS1 induction could be reduced by changing shRNA sequence or vector titre, but stable gene silencing could not be maintained in extended cell culture despite persistent marker gene expression from the RNAi-inducing transgene cassette. These results underscore the necessity of careful controls for immediate and long-term RNAi use in mammalian cell systems.


Journal of Thrombosis and Haemostasis | 2007

Characterization of endothelial-like cells derived from human mesenchymal stem cells.

Jia Wei Liu; Sylvie Dunoyer-Geindre; Véronique Serre-Beinier; G. Mai; J.-F. Lambert; Richard J. Fish; Gilles Pernod; L. Buehler; Henri Bounameaux; Egbert K. O. Kruithof

Summary.  Background:  Blood‐derived endothelial progenitor cells (EPC) have been used to treat ischemic disease. However, the number of EPC that can be obtained from adult blood is limited.


Antimicrobial Agents and Chemotherapy | 2003

Two Mechanisms for Human Immunodeficiency Virus Type 1 Inhibition by N-Terminal Modifications of RANTES

Cristina Pastore; Gaston Picchio; Francesco Galimi; Richard J. Fish; Oliver Hartley; Robin E. Offord; Donald E. Mosier

ABSTRACT C-C chemokine receptor 5 (CCR5) is the primary coreceptor for human immunodeficiency virus type 1 (HIV-1) infection. Native chemokines that bind to CCR5 inhibit HIV-1 infection, albeit weakly, but chemically modified chemokines inhibit infection more efficiently. We have investigated the inhibitory mechanism of three N-terminally modified RANTES variants (AOP-, NNY-, and PSC-RANTES) with the MT-2 human T-cell line stably expressing either native or mutated CCR5. The RANTES analogues showed the same rank order (PSC > NNY > AOP) in their capacity to induce prolonged CCR5 internalization, inhibit surface reexpression, and prevent HIV-1 infection on MT-2 cells expressing wild-type CCR5 or CCR5 with four C-terminal serine phosphorylation sites mutated to alanine. None of the RANTES analogues caused internalization of a C-terminal cytoplasmic domain deletion mutant of CCR5, and each derivative had equal potency in inhibiting HIV-1 infection of MT-2 cells expressing this mutant. We conclude that the C-terminal cytoplasmic residues of CCR5 are necessary for receptor sequestration by RANTES analogues but that the process and the relative activity of each derivative are not dependent upon phosphorylation of the C-terminal serine residues. Two mechanisms of antiviral activity are demonstrated: receptor blockade and receptor sequestration. Potency correlates with the ability to induce CCR5 sequestration but not with receptor binding, suggesting that sequestration may make the greater contribution to antiviral activity.


Journal of Clinical Investigation | 2008

Role of Gas6 in erythropoiesis and anemia in mice

Anne Angelillo-Scherrer; Laurent Burnier; Diether Lambrechts; Richard J. Fish; Marc Tjwa; Stephane Plaisance; Rocco Sugamele; M Demol; Eduardo Martinez-Soria; Patrick H. Maxwell; Greg Lemke; Stephen P. Goff; Glenn K. Matsushima; H. Shelton Earp; Marc Chanson; Desire Collen; Shozo Izui; Marc Schapira; Edward M. Conway; Peter Carmeliet

Many patients with anemia fail to respond to treatment with erythropoietin (Epo), a commonly used hormone that stimulates erythroid progenitor production and maturation by human BM or by murine spleen. The protein product of growth arrest-specific gene 6 (Gas6) is important for cell survival across several cell types, but its precise physiological role remains largely enigmatic. Here, we report that murine erythroblasts released Gas6 in response to Epo and that Gas6 enhanced Epo receptor signaling by activating the serine-threonine kinase Akt in these cells. In the absence of Gas6, erythroid progenitors and erythroblasts were hyporesponsive to the survival activity of Epo and failed to restore hematocrit levels in response to anemia. In addition, Gas6 may influence erythropoiesis via paracrine erythroblast-independent mechanisms involving macrophages. When mice with acute anemia were treated with Gas6, the protein normalized hematocrit levels without causing undesired erythrocytosis. In a transgenic mouse model of chronic anemia caused by insufficient Epo production, Gas6 synergized with Epo in restoring hematocrit levels. These findings may have implications for the treatment of patients with anemia who fail to adequately respond to Epo.


Journal of Immunology | 2010

A Physiological Function of Inflammation-Associated SerpinB2 Is Regulation of Adaptive Immunity

Wayne A. Schroder; Thuy Le; Lee Major; Shayna Street; Joy Gardner; Eleanore Lambley; Katrina Jane Ivy Markey; Kelli P. A. MacDonald; Richard J. Fish; Ranjeny Thomas; Andreas Suhrbier

SerpinB2 (plasminogen activator inhibitor-2) is widely described as an inhibitor of urokinase plasminogen activator; however, SerpinB2−/− mice show no detectable increase in urokinase plasminogen activator activity. In this study, we describe an unexpected immune phenotype in SerpinB2−/− mice. After immunization with OVA in CFA, SerpinB2−/− mice made ≈6-fold more IgG2c and generated ≈2.5-fold more OVA-specific IFN-γ–secreting T cells than SerpinB2+/+ littermate controls. In SerpinB2+/+ mice, high inducible SerpinB2 expression was seen at the injection site and in macrophages low levels in draining lymph nodes and conventional dendritic cells, and no expression was seen in plasmacytoid dendritic, B, T, or NK cells. SerpinB2−/− macrophages promoted greater IFN-γ secretion from wild-type T cells in vivo and in vitro and, when stimulated with anti-CD40/IFN-γ or cultured with wild-type T cells in vitro, secreted more Th1-promoting cytokines than macrophages from littermate controls. Draining lymph node SerpinB2−/− myeloid APCs similarly secreted more Th1-promoting cytokines when cocultured with wild-type T cells. Regulation of Th1 responses thus appears to be a physiological function of inflammation-associated SerpinB2; an observation that may shed light on human inflammatory diseases like pre-eclampsia, lupus, asthma, scleroderma, and periodontitis, which are associated with SerpinB2 polymorphisms or dysregulated SerpinB2 expression.


Thrombosis and Haemostasis | 2012

Fibrinogen gene regulation

Richard J. Fish; Marguerite Neerman-Arbez

The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression.


BMC Evolutionary Biology | 2007

Gene conversion limits divergence of mammalian TLR1 and TLR6

Egbert K. O. Kruithof; Nathalie Satta; Jia Wei Liu; Sylvie Dunoyer-Geindre; Richard J. Fish

BackgroundToll-like receptors (TLR) recognize pathogen-associated molecular patterns and are important mediators of the innate immune system. TLR1 and TLR6 are paralogs and located in tandem on the same chromosome in mammals. They form heterodimers with TLR2 and bind lipopeptide components of gram-positive and gram-negative bacterial cell walls. To identify conserved stretches in TLR1 and TLR6, that may be important for their function, we compared their protein sequences in nine mammalian species(Homo sapiens, Pan troglodytes, Macaca mulatta, Mus musculus, Rattus norvegicus; Erinaceus europaeus, Bos Taurus, Sus scrofa and Canis familiaris).ResultsThe N-terminal sequences of the orthologous proteins showed greater similarity than corresponding paralog sequences. However, we identified a region of 300 amino acids towards the C-terminus of TLR1 and TLR6, where paralogs had a greater degree of sequence identity than orthologs. Preservation of DNA sequence identity of paralogs in this region was observed in all nine mammalian species investigated, and is due to independent gene conversion events. The regions having undergone gene conversion in each species are almost identical and encode the leucine-rich repeat motifs 16 to 19, the C-terminal cap motif, the transmembrane domain and most of the intracellular Toll/interleukin-1 receptor (TIR) domain.ConclusionOur results show that, for a specific conserved region, divergence of TLR1 and TLR6 is limited by gene conversion, most likely because of the need for co-evolution with multiple intracellular and extracellular binding partners. Thus, gene conversion provides a mechanism for limiting the divergence of functional regions of protein paralogs, while allowing other domains to evolve diversified functions.


Journal of Immunology | 2007

Neutrophil Transmigration under Shear Flow Conditions In Vitro Is Junctional Adhesion Molecule-C Independent

Monica Sircar; Paul F. Bradfield; Michel Aurrand-Lions; Richard J. Fish; Pilar Alcaide; Lin Yang; Gail Newton; Deanna J. Lamont; Seema Sehrawat; Tanya N. Mayadas; Tony W. Liang; Charles A. Parkos; Beat A. Imhof; Francis W. Luscinskas

Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-α, IL-1β, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN β2 integrins during transendothelial migration.


Stem Cells | 2006

Promoter Dependence of Transgene Expression by Lentivirus‐Transduced Human Blood–Derived Endothelial Progenitor Cells

Jia Wei Liu; Gilles Pernod; Sylvie Dunoyer-Geindre; Richard J. Fish; Hong Yang; Henri Bounameaux; Egbert K. O. Kruithof

Peripheral blood– derived endothelial progenitor cells (EPCs) have considerable potential for the autologous therapy of vascular lesions or ischemic tissues. By introducing stable genetic modifications into these cells, this potential might be further enhanced. We investigated to what extent transgene expression can be controlled by using different transgene promoters. This was investigated in early‐ or late‐outgrowth human EPCs obtained by culturing blood mononuclear cells for 1 or 4 weeks on type 1 collagen in medium containing endothelial growth supplements. A large fraction of these cells were stably transduced using lentiviral vectors for expression of the enhanced green fluorescent protein (EGFP). Transgene expression in vitro or in vivo after injection into nude mice was highest when under the control of the cytomegalovirus (CMV) promoter, intermediate with the EF1α promoter, and lowest with the phosphoglycerate kinase promoter. When blood mononuclear cells were cultured for 1 week in the absence of endothelial growth supplements, CMV promoter– driven expression of EGFP was two orders of magnitude lower than in similarly transduced EPCs. Our results show that lentiviral vectors are useful tools for the stable introduction of exogenous genes into EPCs and for their expression at desired levels using the appropriate gene promoter.


Biochemical Journal | 2007

Fluvastatin inhibits regulated secretion of endothelial cell von Willebrand factor in response to diverse secretagogues

Richard J. Fish; Hong Yang; Christelle Viglino; Raoul Schorer; Sylvie Dunoyer-Geindre; Egbert K. O. Kruithof

Regulated secretion of EC (endothelial cell) vWF (von Willebrand factor) is part of the haemostatic response. It occurs in response to secretagogues that raise intracellular calcium or cAMP. Statins are cholesterol-lowering drugs used for the treatment of cardiovascular disease. We studied the effect of fluvastatin on regulated secretion of vWF from HUVEC (human umbilical-vein ECs). Secretion in response to thrombin, a protease-activated receptor-1 agonist peptide, histamine, forskolin and adrenaline (epinephrine) was inhibited. This inhibition was reversed by mevalonate or geranylgeranyl pyrophosphate, and mimicked by a geranylgeranyl transferase inhibitor, demonstrating that the inhibitory mechanism includes inhibition of protein geranylgeranylation. To investigate this mechanism further, calcium handling and NO (nitric oxide) regulation were studied in fluvastatin-treated HUVEC. Intracellular calcium mobilization did not correlate with vWF secretion. Fluvastatin increased eNOS [endothelial NOS (NO synthase)] expression, but NOS inhibitors failed to reverse the effect of fluvastatin on vWF secretion. Exogenous NO did not inhibit thrombin-induced vWF secretion. Many small GTPases are geranylgeranylated and some are activated by secretagogues. We overexpressed DN (dominant negative) Rho GTPases, RhoA, Rac1 and Cdc42 (cell division cycle 42), in HUVEC. DNCdc42 conferred inhibition of thrombin- and forskolin-induced vWF secretion. We conclude that, via inhibition of protein geranylgeranylation, fluvastatin is a broadspectrum inhibitor of regulated vWF secretion. Geranylgeranylated small GTPases with functional roles in regulated secretion, such as Cdc42, are potential targets for the inhibitory activity of fluvastatin.

Collaboration


Dive into the Richard J. Fish's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge