Richard J. Geider
University of Essex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard J. Geider.
European Journal of Phycology | 2002
Richard J. Geider
A compilation of data on the elemental composition of marine phytoplankton from published studies was used to determine the range of C:N:P. The N:P ratio of algae and cyanobacteria is very plastic in nutrient-limited cells, ranging from <5 mol N:mol P when phosphate is available greatly in excess of nitrate or ammonium to <100 mol N:mol P when inorganic N is present greatly in excess of P. Under optimal nutrient-replete growth conditions, the cellular N:P ratio is somewhat more constrained, ranging from 5 to 19 mol N:mol P, with most observations below the Redfield ratio of 16. Limited data indicate that the critical N:P that marks the transition between N- and P-limitation of phytoplankton growth lies in the range 20–50 mol N:mol P, considerably in excess of the Redfield ratio. Biochemical composition can be used to constrain the critical N:P. Although the biochemical data do not preclude the critical N:P from being as high as 50, the typical biochemical composition of nutrient-replete algae and cyanobacteria suggests that the critical N:P is more likely to lie in the range between 15 and 30. Despite the observation that the overall average N:P composition of marine particulate matter closely approximates the Redfield ratio of 16, there are significant local variations with a range from 5 to 34. Consistent with the culture studies, lowest values of N:P are associated with nitrate- and phosphate-replete conditions. The highest values of N:P are observed in oligotrophic waters and are within the range of critical N:P observed in cultures, but are not so high as to necessarily invoke P-limitation. The C:N ratio is also plastic. The average C:N ratios of nutrientreplete phytoplankton cultures, oceanic particulate matter and inorganic N and C draw-down are slightly greater than the Redfield ratio of 6.6. Neither the analysis of laboratory C:N:P data nor a more theoretical approach based on the relative abundance of the major biochemical molecules in the phytoplankton can support the contention that the Redfield N:P reflects a physiological or biochemical constraint on the elemental composition of primary production.
Nature | 2004
Matthew M. Mills; Céline Ridame; Margaret Davey; Richard J. Geider
The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments and subsequently confirmed by large-scale iron fertilization experiments. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales, providing an alternative to phosphorus as the ultimate limiting nutrient. Oceanographic observations have been interpreted both to confirm and refute this hypothesis, but direct experimental evidence is lacking. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs and strongly impacted by Saharan dust input. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic.
Science | 2008
Robert A. Duce; Julie LaRoche; Katye E. Altieri; Kevin R. Arrigo; Alex R. Baker; Douglas G. Capone; Sarah Cornell; Frank Dentener; James N. Galloway; Raja Ganeshram; Richard J. Geider; Timothy D. Jickells; Marcel M. M. Kuypers; Rebecca Langlois; Peter S. Liss; S. M. Liu; Jack J. Middelburg; C. M. Moore; Slobodan Nickovic; Andreas Oschlies; Thomas F. Pedersen; Joseph M. Prospero; Reiner Schlitzer; Sybil P. Seitzinger; Lise Lotte Sørensen; Mitsuo Uematsu; Osvaldo Ulloa; Maren Voss; Bess B. Ward
Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the oceans external (nonrecycled) nitrogen supply and up to ∼3% of the annual new marine biological production, ∼0.3 petagram of carbon per year. This input could account for the production of up to ∼1.6 teragrams of nitrous oxide (N2O) per year. Although ∼10% of the oceans drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.
Estuaries | 1996
Hugh L. MacIntyre; Richard J. Geider; Douglas C. Miller
The microphytobenthos consists of unicellular eukaryotic algae and cyanobacteria that grow within the upper several millimeters of illuminated sediments, typically appearing only as a subtle brownish or greenish shading. The surficial layer of the sediment is a zone of intense microbial and geochemical activity and of considerable physical reworking. In many shallow ecosystems, the biomass of benthic microalgae often exceeds that of the phytoplankton in the overlying waters. Direct comparison of the abundance of benthic and suspended microalgae is complicated by the means used to measure biomass and by the vertical and horizontal distribution of the microphytobenthos in the sediment. Where biomass has been estimated as chlorophyll a, there may be negligible to large (40%) error due to interference by degradation products, except where chlorophyll is measured by high-performance liquid chromatography. The vertical distribution of microphytobenthos, aside from mat-forming species, is determined by the opposing effects of their vertical migration, which tends to concentrate them near the surface, and physical mixing by overlying currents, which tends to cause an even vertical distribution through the mixed layer of sediment. Uncertainties in vertical distribution are compounded by frequently patchy horizontal distribution. Under-sampling on small (<1 m) scales can lead to errors in the estimate that are comparable to the ranges of seasonal and geographic variation. These uncertainties are compounded by biases in the techniques used to estimate production by the microphytobenthos. In most environments studied, biomass (as chlorophyll a) and light availability appear to be the principal determinants of benthic primary production. The effect of variable light intensities on integral production can be described by a functional response curve. When normalized to the chlorophyll content of the surficial sediment, the residual variation in the data described by the functional response curve is due to changes in the chlorophyll-specific response to irradiance. Production by the benthos is often a significant fraction of production in the water column and microphytobenthos may contribute directly to water column production when they are resuspended. Thus on both the basis of biomass and biogeochemical reactivity, benthic microalgae play significant roles in system productivity and trophic dynamics, as well as such habitat characteristics as sediment stability. *** DIRECT SUPPORT *** A01BY074 00003
Journal of Phycology | 2002
Hugh L. MacIntyre; Todd M. Kana; Tracy Anning; Richard J. Geider
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.
Journal of Phycology | 1993
Richard J. Geider; Julie Roche; Richard M. Greene; Miguel Olaizola
The effects of nitrate, phosphate, and iron starvation and resupply on photosynthetic pigments, selected photosynthetic proteins, and photosystem II (PSII) photochemistry were examined in the diatom Phaeodactylum tricornutum Bohlin (CCMP 1327). Although cell chlorophyll a (chl a) content decreased in nutrient‐starved cells, the ratios of light‐harvesting accessory pigments (chl c and fucoxanthin) to chl a were unaffected by nutrient starvation. The chl a‐specific light absorpition coefficient (a*) and the functional absorption cross‐section of PSII (σ) increased during nutrient starvation, consistent with reduction of intracellular self‐shading (i.e. a reduction of the “package effect”) as cells became chlorotic. The light‐harvesting complex proteins remained a constant proportion of total cell protein during nutrient starvation, indicating that chlorosis mirrored a general reduction in cell protein content. The ratio of the xanthophylls cycle pigments diatoxanthin and diadinoxanthin to chl a increased during nutrient starvation. These pigments are thought to play a photo‐protective role by increasing dissipation of excitation energy in the pigment bed upstream from the reaction centers. Despite the increase in diatoxanthin and diadinoxanthin, the efficiency of PSII photochemistry, as measured by the ration of variable to maximum fluorescence (Fv/Fm) of dark‐adapted cells, declined markedly under nitrate and iron starvation and moderately under phosphate starvation. Parallel to changes in Fv/Fm were decreases in abundance of the reaction center protein D1 consistent with damage of PSII reaction centers in nutrient‐starved cells. The relative abundance of the carboxylating enzyme, ribulose bisphosphate carboxylase/oxygenase (RUBISCO), decreased in response to nitrate and iron starvation but not phosphate starvation. Most marked was the decline in the abundance of the small subunit of RUBISCO in nitrate‐starved cells. The changes in pigment content and fluorescence characteristics were typically reversed within 24 h of resupply of the limiting nutrient.
Photosynthesis Research | 1994
Richard J. Geider
Iron supply has been suggested to influence phytoplankton biomass, growth rate and species composition, as well as primary productivity in both high and low NO3− surface waters. Recent investigations in the equatorial Pacific suggest that no single factor regulates primary productivity. Rather, an interplay of bottom-up (i.e., ecophysiological) and top-down (i.e., ecological) factors appear to control species composition and growth rates. One goal of biological oceanography is to isolate the effects of single factors from this multiplicity of interactions, and to identify the factors with a disproportionate impact. Unfortunately, our tools, with several notable exceptions, have been largely inadequate to the task. In particular, the standard technique of nutrient addition bioassays cannot be undertaken without introducing artifacts. These so-called ‘bottle effects’ include reducing turbulence, isolating the enclosed sample from nutrient resupply and grazing, trapping the isolated sample at a fixed position within the water column and thus removing it from vertical movement through a light gradient, and exposing the sample to potentially stimulatory or inhibitory substances on the enclosure walls. The problem faced by all users of enrichment experiments is to separate the effects of controlled nutrient additions from uncontrolled changes in other environmental and ecological factors. To overcome these limitations, oceanographers have sought physiological or molecular indices to diagnose nutrient limitation in natural samples. These indices are often based on reductions in the abundance of photosynthetic and other catalysts, or on changes in the efficiency of these catalysts. Reductions in photosynthetic efficiency often accompany nutrient limitation either because of accumulation of damage, or impairment of the ability to synthesize fully functional macromolecular assemblages. Many catalysts involved in electron transfer and reductive biosyntheses contain iron, and the abundances of most of these catalysts decline under iron-limited conditions. Reductions of ferredoxin or cytochrome f content, nitrate assimilation rates, and dinitrogen fixation rates are amongst the diagnostics that have been used to infer iron limitation in some marine systems. An alternative approach to diagnosing iron-limitation uses molecules whose abundance increases in response to iron-limitation. These include cell surface iron-transport proteins, and the electron transfer protein flavodoxin which replaces the Fe-S protein ferredoxin in many Fe-deficient algae and cyanobacteria.
Nature Geoscience | 2009
C. Mark Moore; Matthew M. Mills; Eric P. Achterberg; Richard J. Geider; Julie LaRoche; Mike Lucas; Elaine L. McDonagh; Xi Pan; Alex J. Poulton; Micha J. A. Rijkenberg; David J. Suggett; Simon J. Ussher; E. Malcolm S. Woodward
Oceanic fixed-nitrogen concentrations are controlled by the balance between nitrogen fixation and denitrification1, 2, 3, 4. A number of factors, including iron limitation5, 6, 7, can restrict nitrogen fixation, introducing the potential for decoupling of nitrogen inputs and losses2, 5, 8. Such decoupling could significantly affect the oceanic fixed-nitrogen inventory and consequently the biological component of ocean carbon storage and hence air–sea partitioning of carbon dioxide2, 5, 8, 9. However, the extent to which nutrients limit nitrogen fixation in the global ocean is uncertain. Here, we examined rates of nitrogen fixation and nutrient concentrations in the surface waters of the Atlantic Ocean along a north–south 10,000 km transect during October and November 2005. We show that rates of nitrogen fixation were markedly higher in the North Atlantic compared with the South Atlantic Ocean. Across the two basins, nitrogen fixation was positively correlated with dissolved iron and negatively correlated with dissolved phosphorus concentrations. We conclude that inter-basin differences in nitrogen fixation are controlled by iron supply rather than phosphorus availability. Analysis of the nutrient content of deep waters suggests that the fixed nitrogen enters North Atlantic Deep Water. Our study thus supports the suggestion that iron significantly influences nitrogen fixation5, and that subsequent interactions with ocean circulation patterns contribute to the decoupling of nitrogen fixation and loss2, 4, 8.
Estuaries | 1996
Douglas C. Miller; Richard J. Geider; Hugh L. MacIntyre
The microphytobenthos form an important component of all shallow-water ecosystems where enough light reaches the sediment surface to support appreciable primary production. Although less conspicuous than macroalgae or vascular plants, the microphytobenthos can contribute significantly to primary production and can modify habitat characteristics. The microphytobenthos alter sediment properties (e.g., erodibility) both directly, in the extreme forming a mat or scum on the sediment surface, and indirectly by modifying the activities of benthic infauna (e.g., pelletization, burrowing, tube building, and sediment tracking). Carbon dioxide fixed by the microphytobenthos supports higher, grazing trophic levels. These include deposit-feeding and suspension-feeding macrofauna as well as meiofauna and microfauna. Quantitative relations between the feeding and growth rates of macrofauna and the abundance of microphytobenthos and suspended organic matter (i.e., functional responses) are reviewed. Given the current state of knowledge of the direct and indirect interactions involving trophic dynamics, sediment properties, and benthic microalgae, we argue for reductionist studies of particular interactions as distinct entities. This is a prerequisite for the emergence of a comprehensive picture of unvegetated ecosystems and the ability to predict their responses to man’s activities. *** DIRECT SUPPORT *** A01BY074 00005
European Journal of Phycology | 1998
Richard J. Geider; Hugh L. MacIntyre; Lisa M. Graziano; R. Michael L. McKay
Nitrogen (N) and phosphorus (P) limitation affect the photosynthetic apparatus of Dunaliella tertiolecta in markedly different ways. When grown at 0.25 d−1 (18% of the resource-saturated maximum rate, μmax = 1.39 d−1) in chemostat cultures, N- and P-limited cells were chlorotic relative to nutrient-replete controls. The lutein-to-chlorophyll a ratio increased under both N and P limitation, whereas the neoxanthin-to-chlorophyll a ratio increased only under P limitation. The ratio of accessory photoprotective pigments (α- and β-carotene) to chlorophyll a increased under N-limited conditions. Despite differences in accessory pigment complement, chlorophyll a-specific light absorption coefficients of N- and P-limited cultures did not differ significantly, and were greater than in nutrient-replete conditions. In contrast, the initial slope of the photosynthesis.irradiance (PE) response curve (αChl) declined under nutrient-limiting conditions. There were slight reductions in the maximum quantum efficiency of ph...