Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Kottenstette is active.

Publication


Featured researches published by Richard J. Kottenstette.


Proceedings of SPIE | 1998

Microfabricated silicon gas chromatographic micro-channels: fabrication and performance

Carolyn M. Matzke; Richard J. Kottenstette; Stephen A. Casalnuovo; Gregory C. Frye-Mason; Mary L. Hudson; Darryl Y. Sasaki; Ronald P. Manginell; C. Channy Wong

Using both wet and plasma etching, we have fabricated micro- channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 micrometer wide, 200 to 400 micrometer deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm2 on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro-channel sidewalls, which dominate the GC physico- chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.


Archive | 1998

Integrated Chemical Analysis Systems for Gas Phase CW Agent Detection

Gregory C. Frye-Mason; Richard J. Kottenstette; Edwin J. Heller; Carolyn M. Matzke; Stephen A. Casalnuovo; Patrick R. Lewis; Ronald P. Manginell; W. Kent Schubert; Vincent M. Hietala; R. J. Shul

A miniature, integrated chemical laboratory (μChemLab) is being developed that utilizes microfabrication to provide faster response, smaller size, and an ability to utilize multiple analysis channels for enhanced versatility and chemical discrimination. Improved sensitivity and selectivity are achieved by using a cascaded approach where each channel includes a sample collector/concentrator, a gas chromatographic (GC) separator, and a chemically selective surface acoustic wave (SAW) array detector. Prototypes of all three components have been developed and demonstrated individually and current work is focused on integrating these into a complete analysis system.


international microprocesses and nanotechnology conference | 1999

Microfabricated gas phase chemical analysis systems

Gregory C. Frye-Mason; Ronald P. Manginell; Edwin J. Heller; Carolyn M. Matzke; Stephen A. Casalnuovo; Vincent M. Hietala; Richard J. Kottenstette; Pat Lewis; Chungnin C. Wong

A portable, autonomous, hand-held chemical laboratory (/spl mu/ChemLab/sup TM/) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.


Chemical and Biological Early Warning Monitoring for Water, Food, and Ground | 2002

Rapid detection of bacteria with miniaturized pyrolysis-gas chromatographic analysis

Curtis D. Mowry; Catherine H. Morgan; Quentin J. Baca; Ronald P. Manginell; Richard J. Kottenstette; Patrick R. Lewis; Gregory C. Frye-Mason

Rapid detection and identification of bacteria and other pathogens is important for many civilian and military applications. The profiles of biological markers such as fatty acids can be used to characterize biological samples or to distinguish bacteria at the gram-type, genera, and even species level. Common methods for whole cell bacterial analysis are neither portable nor rapid, requiring lengthy, labor intensive sample preparation and bench-scale instrumentation. These methods chemically derivatize fatty acids to produce more volatile fatty acid methyl esters (FAMEs) that can be separated and analyzed by a gas chromatograph (GC)/mass spectrometer. More recent publications demonstrate decreased sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis/derivatization. Ongoing development of miniaturized pyrolysis/GC instrumentation by this department capitalizes on Sandia advances in the field of microfabricated chemical analysis systems ((mu) ChemLab). Microdevices include rapidly heated stages capable of pyrolysis or sample concentration, gas chromatography columns, and surface acoustic wave (SAW) sensor arrays. We will present results demonstrating the capabilities of these devices toward fulfilling the goal of portable, rapid detection and early warning of the presence of pathogens in air or water.


Proceedings of SPIE, the International Society for Optical Engineering | 2006

Micro-analytical systems for national security applications

R. W. Cernosek; Alex Robinson; D. Y. Cruz; D. R. Adkins; J. L. Barnett; J. M. Bauer; M. G. Blain; J. E. Byrnes; Shawn M. Dirk; G. R. Dulleck; J. A. Ellison; J. G. Fleming; T. W. Hamilton; E. J. Heller; S. W. Howell; Richard J. Kottenstette; Patrick R. Lewis; Ronald P. Manginell; Matthew W. Moorman; Curtis D. Mowry; R. G. Manley; Murat Okandan; K. Rahimian; G. J. Shelmidine; R. J. Shul; Robert J Simonson; S. S. Sokolowski; J. J. Spates; Alan W. Staton; Daniel E. Trudell

Sandia National Laboratories has a long tradition of technology development for national security applications. In recent years, significant effort has been focused on micro-analytical systems - handheld, miniature, or portable instruments built around microfabricated components. Many of these systems include microsensor concepts and target detection and analysis of chemical and biological agents. The ultimate development goal for these instruments is to produce fully integrated sensored microsystems. Described here are a few new components and systems being explored: (1) A new microcalibrator chip, consisting of a thermally labile solid matrix on an array of suspended-membrane microhotplates, that when actuated delivers controlled quantities of chemical vapors. (2) New chemical vapor detectors, based on a suspended-membrane micro-hotplate design, which are amenable to array configurations. (3) Micron-scale cylindrical ion traps, fabricated using a molded tungsten process, which form the critical elements for a micro-mass analyzer. (4) Monolithically integrated micro-chemical analysis systems fabricated in silicon that incorporate chemical preconcentrators, gas chromatography columns, detector arrays, and MEMS valves.


Proceedings of SPIE, the International Society for Optical Engineering | 2001

Rapid identification of bacteria with miniaturized pyrolysis/GC analysis

Catherine H. Morgan; Curtis D. Mowry; Ronald P. Manginell; Gregory C. Frye-Mason; Richard J. Kottenstette; Patrick R. Lewis

Identification of bacteria and other biological moieties finds a broad range of applications in the environmental, biomedical, agricultural, industrial, and military arenas. Linking these applications are biological markers such as fatty acids, whose mass spectral profiles can be used to characterize biological samples and to distinguish bacteria at the gram-type, genera, and even species level. Common methods of sample analysis require sample preparation that is both lengthy and labor intensive, especially for whole cell bacteria. The background technique relied on here utilizes chemical derivatization of fatty acids to the more volatile fatty acid methyl esters (FAMEs), which can be separated on a gas chromatograph column or input directly into a mass spectrometer. More recent publications demonstrate improved sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis at the inlet; although much faster than traditional techniques, these systems still rely on bench-top analytical equipment and individual sample preparation. Development of a miniaturized pyrolysis/GC instrument by this group is intended to realize the benefits of FAME identification of bacteria and other biological samples while further facilitating sample handling and instrument portability. The technologies being fabricated and tested have the potential of achieving pyrolysis and FAME separation on a very small scale, with rapid detection time (1-10 min from introduction to result), and with a modular sample inlet. Performance results and sensor characterization will be presented for the first phase of instrument development, encompassing the microfabricated pyrolysis and gas chromatograph elements.


Lab-on-a-Chip: Platforms, Devices, and Applications | 2004

Recent advancements in the gas-phase MicroChemLab

Ronald P. Manginell; Patrick R. Lewis; Douglas R. Adkins; Richard J. Kottenstette; David Wheeler; Sara Suzette Sokolowski; Dan Trudell; Joy E. Byrnes; Murat Okandan; Joseph M. Bauer; Robert George Manley

Sandias hand-held MicroChemLabTM system uses a micromachined preconcentrator (PC), a gas chromatography channel (GC) and a quartz surface acoustic wave array (SAW) detector for sensitive/selective detection of gas-phase chemical analytes. Requisite system size, performance, power budget and time response mandate microfabrication of the key analytical system components. In the fielded system hybrid integration has been employed, permitting optimization of the individual components. Recent improvements in the hybrid-integrated system, using plastic, metal or silicon/glass manifolds, is described, as is system performance against semivolatile compounds and toxic industrial chemicals. The design and performance of a new three-dimensional micropreconcentrator is also introduced. To further reduce system dead volume, eliminate unheated transfer lines and simplify assembly, there is an effort to monolithically integrate the silicon PC and GC with a suitable silicon-based detector, such as a magnetically-actuated flexural plate wave sensor (magFPW) or a magnetically-actuated pivot plate resonator (PPR).


Proceedings of SPIE | 1998

Acoustic wave chemical microsensors in GaAs

Stephen A. Casalnuovo; Edwin J. Heller; Vincent M. Hietala; Albert G. Baca; Richard J. Kottenstette; Susan L. Hietala; John L. Reno; Gregory C. Frye-Mason

High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VDC, operates at frequencies up to 500 MHz, and occupies approximately 2 mm2. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperature compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.


Archive | 2008

Preliminary systems engineering evaluations for the National Ecological Observatory Network.

Perry J. Robertson; Richard J. Kottenstette; Shannon M. Crouch; Robert W. Brocato; Bernard Daniel Zak; Thor D. Osborn; Mark D. Ivey; Karl Gass; Edwin J. Heller; James Larry Dishman; William Kent Schubert; Jeffrey A. Zirzow

The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEONs objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.


Other Information: PBD: 1 May 2003 | 2003

Deployment of a Continuously Operated {mu}ChemLab

Douglas R. Adkins; Richard J. Kottenstette; Patrick R. Lewis; George R. Dulleck Jr.; Michael C. Oborny; Susanna P. Gordon; Greg W. Foltz

A continuously operating prototype chemical weapons sensor system based on the {mu}ChemLab{trademark} technology was installed in the San Francisco International Airport in late June 2002. This prototype was assembled in a National Electric Manufacturers Association (NEMA) enclosure and controlled by a personal computer collocated with it. Data from the prototype was downloaded regularly and periodic calibration tests were performed through modem-operated control. The instrument was installed just downstream of the return air fans in the return air plenum of a high-use area of a boarding area. A CW Sentry, manufactured by Microsensor Systems, was installed alongside the {mu}ChemLab unit and results from its operation are reported elsewhere. Tests began on June 26, 2002 and concluded on October 16, 2002. This report will discuss the performance of the prototype during the continuous testing period. Over 70,000 test cycles were performed during this period. Data from this first field emplacement have indicated several areas where engineering improvements can be made for future field emplacement.

Collaboration


Dive into the Richard J. Kottenstette's collaboration.

Top Co-Authors

Avatar

Ronald P. Manginell

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick R. Lewis

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Carolyn M. Matzke

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Edwin J. Heller

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Curtis D. Mowry

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas R. Adkins

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Vincent M. Hietala

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Chungnin C. Wong

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge