Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Krauzlis is active.

Publication


Featured researches published by Richard J. Krauzlis.


Trends in Cognitive Sciences | 2014

Attention as an effect not a cause

Richard J. Krauzlis; Anil Bollimunta; Fabrice Arcizet; Lupeng Wang

Attention is commonly thought to be important for managing the limited resources available in sensory areas of the neocortex. Here we present an alternative view that attention arises as a byproduct of circuits centered on the basal ganglia involved in value-based decision making. The central idea is that decision making depends on properly estimating the current state of the animal and its environment and that the weighted inputs to the currently prevailing estimate give rise to the filter-like properties of attention. After outlining this new framework, we describe findings from physiological, anatomical, computational, and clinical work that support this point of view. We conclude that the brain mechanisms responsible for attention employ a conserved circuit motif that predates the emergence of the neocortex.


European Journal of Neuroscience | 2013

Superior colliculus inactivation alters the relationship between covert visual attention and microsaccades.

Ziad M. Hafed; Lee P. Lovejoy; Richard J. Krauzlis

Microsaccades are tiny saccades that occur during gaze fixation. Whereas these movements have traditionally been viewed as random, it was recently discovered that microsaccade directions can be significantly biased by covertly attended visual stimuli. The detailed mechanisms mediating such a bias are neither known nor immediately obvious, especially because the amplitudes of the movements influenced by attentional cueing could be up to two orders of magnitude smaller than the eccentricity of the attended location. Here, we tested whether activity in the peripheral superior colliculus (SC) is necessary for this correlation between attentional cueing and microsaccades. We reversibly and focally inactivated SC neurons representing peripheral regions of visual space while rhesus monkeys performed a demanding covert visual attention task. The normal bias of microsaccade directions observed in each monkey before SC inactivation was eliminated when a cue was placed in the visual region affected by the inactivation; microsaccades were, instead, biased away from the affected visual space. When the cue was placed at another location unaffected by SC inactivation, the baseline cue‐induced bias of microsaccade directions remained mostly intact, because the cue was in unaffected visual space, and any remaining changes were again explained by a repulsion of microsaccades away from the inactivated region. Our results indicate that peripheral SC activity is required for the link between microsaccades and the cueing of covert visual attention, and that it could do so by altering the probability of triggering microsaccades without necessarily affecting the motor generation of these movements.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Learning where to look for a hidden target

Leanne Chukoskie; Joseph Snider; Michael C. Mozer; Richard J. Krauzlis; Terrence J. Sejnowski

Survival depends on successfully foraging for food, for which evolution has selected diverse behaviors in different species. Humans forage not only for food, but also for information. We decide where to look over 170,000 times per day, approximately three times per wakeful second. The frequency of these saccadic eye movements belies the complexity underlying each individual choice. Experience factors into the choice of where to look and can be invoked to rapidly redirect gaze in a context and task-appropriate manner. However, remarkably little is known about how individuals learn to direct their gaze given the current context and task. We designed a task in which participants search a novel scene for a target whose location was drawn stochastically on each trial from a fixed prior distribution. The target was invisible on a blank screen, and the participants were rewarded when they fixated the hidden target location. In just a few trials, participants rapidly found the hidden targets by looking near previously rewarded locations and avoiding previously unrewarded locations. Learning trajectories were well characterized by a simple reinforcement-learning (RL) model that maintained and continually updated a reward map of locations. The RL model made further predictions concerning sensitivity to recent experience that were confirmed by the data. The asymptotic performance of both the participants and the RL model approached optimal performance characterized by an ideal-observer theory. These two complementary levels of explanation show how experience in a novel environment drives visual search in humans and may extend to other forms of search such as animal foraging.


Vision Research | 2013

Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans.

Miguel P. Eckstein; Stephen C. Mack; Dorion B. Liston; Lisa Bogush; Randolf Menzel; Richard J. Krauzlis

Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can approximate the benefits of the more computationally complex optimal Bayesian model. We discuss the implications of our findings on the fields common conceptualization of covert visual attention in the cueing task and what aspects, if any, might be unique to humans.


Philosophical Transactions of the Royal Society B | 2017

Neuronal control of fixation and fixational eye movements

Richard J. Krauzlis; Laurent Goffart; Ziad M. Hafed

Ocular fixation is a dynamic process that is actively controlled by many of the same brain structures involved in the control of eye movements, including the superior colliculus, cerebellum and reticular formation. In this article, we review several aspects of this active control. First, the decision to move the eyes not only depends on target-related signals from the peripheral visual field, but also on signals from the currently fixated target at the fovea, and involves mechanisms that are shared between saccades and smooth pursuit. Second, eye position during fixation is actively controlled and depends on bilateral activity in the superior colliculi and medio-posterior cerebellum; disruption of activity in these circuits causes systematic deviations in eye position during both fixation and smooth pursuit eye movements. Third, the eyes are not completely still during fixation but make continuous miniature movements, including ocular drift and microsaccades, which are controlled by the same neuronal mechanisms that generate larger saccades. Finally, fixational eye movements have large effects on visual perception. Ocular drift transforms the visual input in ways that increase spatial acuity; microsaccades not only improve vision by relocating the fovea but also cause momentary changes in vision analogous to those caused by larger saccades. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Changes in perceptual sensitivity related to spatial cues depends on subcortical activity

Lee P. Lovejoy; Richard J. Krauzlis

Significance Our paper addresses an important question about the brain circuits for visual spatial attention: what are the mechanisms that make it possible to focus on some visual objects and ignore others? Recent work suggests that cortical and subcortical areas might make distinct contributions to attention: some cortical areas may be responsible for changes in perceptual sensitivity whereas other cortical and subcortical areas may control how subjects select between visual objects. Contrary to this suggestion, our results demonstrate that activity from a subcortical structure in the primate, the superior colliculus, is also necessary to produce changes in perceptual sensitivity in an attention-cueing paradigm. Thus, attention-related changes in perceptual sensitivity are not accomplished by cortical areas alone but also depend on subcortical signals. Spatial cues allow animals to selectively attend to relevant visual stimuli while ignoring distracters. This process depends on a distributed neuronal network, and an important current challenge is to understand the functional contributions made by individual brain regions within this network and how these contributions interact. Recent findings point to a possible anatomical segregation, with cortical and subcortical brain regions contributing to different functional components of selective attention. Cortical areas, especially visual cortex, may be responsible for implementing changes in perceptual sensitivity by changing the signal-to-noise ratio, whereas other regions, such as the superior colliculus, may be involved in processes that influence selection between competing stimuli without regulating perceptual sensitivity. Such a segregation of function would predict that when activity in the superior colliculus is suppressed by reversible inactivation, animals should still show changes in perceptual sensitivity mediated by the intact cortical circuits. Contrary to this prediction, here we report that inactivation of the primate superior colliculus eliminates the changes in perceptual sensitivity made possible by spatial cues. These findings demonstrate changes in perceptual sensitivity depend not only on neuronal activity in cortex but also require interaction with signals from the superior colliculus.


Frontiers in Systems Neuroscience | 2012

Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey

Kristina J. Nielsen; Edward M. Callaway; Richard J. Krauzlis

Viral vectors are promising tools for the dissection of neural circuits. In principle, they can manipulate neurons at a level of specificity not otherwise achievable. While many studies have used viral vector-based approaches in the rodent brain, only a few have employed this technique in the non-human primate, despite the importance of this animal model for neuroscience research. Here, we report evidence that a viral vector-based approach can be used to manipulate a monkeys behavior in a task. For this purpose, we used the allatostatin receptor/allatostatin (AlstR/AL) system, which has previously been shown to allow inactivation of neurons in vivo. The AlstR was expressed in neurons in monkey V1 by injection of an adeno-associated virus 1 (AAV1) vector. Two monkeys were trained in a detection task, in which they had to make a saccade to a faint peripheral target. Injection of AL caused a retinotopic deficit in the detection task in one monkey. Specifically, the monkey showed marked impairment for detection targets placed at the visual field location represented at the virus injection site, but not for targets shown elsewhere. We confirmed that these deficits indeed were due to the interaction of AlstR and AL by injecting saline, or AL at a V1 location without AlstR expression. Post-mortem histology confirmed AlstR expression in this monkey. We failed to replicate the behavioral results in a second monkey, as AL injection did not impair the second monkeys performance in the detection task. However, post-mortem histology revealed a very low level of AlstR expression in this monkey. Our results demonstrate that viral vector-based approaches can produce effects strong enough to influence a monkeys performance in a behavioral task, supporting the further development of this approach for studying how neuronal circuits control complex behaviors in non-human primates.


Cortex | 2017

Selective attention without a neocortex

Richard J. Krauzlis; Amarender Bogadhi; James P. Herman; Anil Bollimunta

Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.


Neuron | 2018

Activation of Striatal Neurons Causes a Perceptual Decision Bias during Visual Change Detection in Mice

Lupeng Wang; Krsna V. Rangarajan; Charles R. Gerfen; Richard J. Krauzlis

The basal ganglia are implicated in perceptual decision-making, although their specific contributions remain unclear. Here, we tested the causal role of the basal ganglia by manipulating neuronal activity in the dorsal striatum of mice performing a visual orientation-change detection (yes/no) task. Brief unilateral optogenetic stimulation caused large changes in task performance, shifting psychometric curves upward by increasing the probability of yes responses with only minor changes in sensitivity. For the direct pathway, these effects were significantly larger when the visual event was expected in the contralateral visual field, demonstrating a lateralized bias in responding to sensory inputs rather than axa0generalized increase in action initiation. For both direct and indirect pathways, the effects were specific to task epochs in which choice-relevant visual stimuli were present. These results indicate that the causal link between striatal activity and decision-making includes an additive perceptual bias in favor of expected or valued visual events.


eNeuro | 2017

Color-Change Detection Activity in the Primate Superior Colliculus

James P. Herman; Richard J. Krauzlis

Abstract The primate superior colliculus (SC) is a midbrain structure that participates in the control of spatial attention. Previous studies examining the role of the SC in attention have mostly used luminance-based visual features (e.g., motion, contrast) as the stimuli and saccadic eye movements as the behavioral response, both of which are known to modulate the activity of SC neurons. To explore the limits of the SC’s involvement in the control of spatial attention, we recorded SC neuronal activity during a task using color, a visual feature dimension not traditionally associated with the SC, and required monkeys to detect threshold-level changes in the saturation of a cued stimulus by releasing a joystick during maintained fixation. Using this color-based spatial attention task, we found substantial cue-related modulation in all categories of visually responsive neurons in the intermediate layers of the SC. Notably, near-threshold changes in color saturation, both increases and decreases, evoked phasic bursts of activity with magnitudes as large as those evoked by stimulus onset. This change-detection activity had two distinctive features: activity for hits was larger than for misses, and the timing of change-detection activity accounted for 67% of joystick release latency, even though it preceded the release by at least 200 ms. We conclude that during attention tasks, SC activity denotes the behavioral relevance of the stimulus regardless of feature dimension and that phasic event-related SC activity is suitable to guide the selection of manual responses as well as saccadic eye movements.

Collaboration


Dive into the Richard J. Krauzlis's collaboration.

Top Co-Authors

Avatar

Anil Bollimunta

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amarender Bogadhi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laurent Goffart

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Lupeng Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Leopold

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fabrice Arcizet

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brian D. Corneil

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Kevin Johnston

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge