Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Leventer is active.

Publication


Featured researches published by Richard J. Leventer.


Nature Genetics | 2003

14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome

Kazuhito Toyo-oka; Aki Shionoya; Michael J. Gambello; Carlos Cardoso; Richard J. Leventer; Heather L. Ward; Ramses Ayala; Li-Huei Tsai; William B. Dobyns; David H. Ledbetter; Shinji Hirotsune; Anthony Wynshaw-Boris

Heterozygous deletions of 17p13.3 result in the human neuronal migration disorders isolated lissencephaly sequence (ILS) and the more severe Miller–Dieker syndrome (MDS). Mutations in PAFAH1B1 (the gene encoding LIS1) are responsible for ILS and contribute to MDS, but the genetic causes of the greater severity of MDS are unknown. Here, we show that the gene encoding 14-3-3ε (YWHAE), one of a family of ubiquitous phosphoserine/threonine–binding proteins, is always deleted in individuals with MDS. Mice deficient in Ywhae have defects in brain development and neuronal migration, similar to defects observed in mice heterozygous with respect to Pafah1b1. Mice heterozygous with respect to both genes have more severe migration defects than single heterozygotes. 14-3-3ε binds to CDK5/p35-phosphorylated NUDEL and this binding maintains NUDEL phosphorylation. Similar to LIS1, deficiency of 14-3-3ε results in mislocalization of NUDEL and LIS1, consistent with reduction of cytoplasmic dynein function. These results establish a crucial role for 14-3-3ε in neuronal development by sustaining the effects of CDK5 phosphorylation and provide a molecular explanation for the differences in severity of human neuronal migration defects with 17p13.3 deletions.


American Journal of Human Genetics | 2003

Refinement of a 400-kb Critical Region Allows Genotypic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Deletions of 17p13.3

Carlos Cardoso; Richard J. Leventer; Heather L. Ward; Kazuhito Toyo-oka; June Chung; Alyssa Gross; Christa Lese Martin; Judith E. Allanson; Daniela T. Pilz; Ann Haskins Olney; Osvaldo M. Mutchinick; Shinji Hirotsune; Anthony Wynshaw-Boris; William B. Dobyns; David H. Ledbetter

Deletions of 17p13.3, including the LIS1 gene, result in the brain malformation lissencephaly, which is characterized by reduced gyration and cortical thickening; however, the phenotype can vary from isolated lissencephaly sequence (ILS) to Miller-Dieker syndrome (MDS). At the clinical level, these two phenotypes can be differentiated by the presence of significant dysmorphic facial features and a more severe grade of lissencephaly in MDS. Previous work has suggested that children with MDS have a larger deletion than those with ILS, but the precise boundaries of the MDS critical region and causative genes other than LIS1 have never been fully determined. We have completed a physical and transcriptional map of the 17p13.3 region from LIS1 to the telomere. Using fluorescence in situ hybridization, we have mapped the deletion size in 19 children with ILS, 11 children with MDS, and 4 children with 17p13.3 deletions not involving LIS1. We show that the critical region that differentiates ILS from MDS at the molecular level can be reduced to 400 kb. Using somatic cell hybrids from selected patients, we have identified eight genes that are consistently deleted in patients classified as having MDS. In addition, deletion of the genes CRK and 14-3-3 epsilon delineates patients with the most severe lissencephaly grade. On the basis of recent functional data and the creation of a mouse model suggesting a role for 14-3-3 epsilon in cortical development, we suggest that deletion of one or both of these genes in combination with deletion of LIS1 may contribute to the more severe form of lissencephaly seen only in patients with MDS.


Brain | 2009

Childhood brain insult: can age at insult help us predict outcome?

Vicki Anderson; Megan Spencer-Smith; Richard J. Leventer; Lee Coleman; Peter Anderson; Jacqueline Williams; Mardee Greenham; Rani Jacobs

Until recently, the impact of early brain insult (EBI) has been considered to be less significant than for later brain injuries, consistent with the notion that the young brain is more flexible and able to reorganize in the context of brain insult. This study aimed to evaluate this notion by comparing cognitive and behavioural outcomes for children sustaining EBI at different times from gestation to late childhood. Children with focal brain insults were categorized according to timing of brain insult, represented by six developmental periods: (i) Congenital (n = 38): EBI: first-second trimester; (ii) Perinatal (n = 33); EBI: third trimester to 1 month post-natal; (iii) Infancy (n = 23): EBI: 2 months-2 years post-birth; (iv) Preschool (n = 19): EBI: 3-6 years; (v) Middle Childhood (n = 31): EBI: 7-9 years; and (vi) Late Childhood (n = 19): EBI: after age 10. Groups were similar with respect to injury and demographic factors. Children were assessed for intelligence, academic ability, everyday executive function and behaviour. Results showed that children with EBI were at increased risk for impairment in all domains assessed. Furthermore, children sustaining EBI before age 2 years recorded global and significant cognitive deficits, while children with later EBI performed closer to normal expectations, suggesting a linear association between age at insult and outcome. In contrast, for behaviour, children with EBI from 7 to 9 years performed worse than those with EBI from 3 to 6 years, and more like those with younger insults, suggesting that not all functions share the same pattern of vulnerability with respect to age at insult.


Neurology | 2005

Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome

Volney L. Sheen; An Jansen; Ming-Hui Chen; Elena Parrini; Timothy R. Morgan; R. Ravenscroft; Vijay S. Ganesh; T. Underwood; James S. Wiley; Richard J. Leventer; R. R. Vaid; D. E. Ruiz; G. M. Hutchins; J. Menasha; Judith P. Willner; Y. Geng; Karen W. Gripp; L. Nicholson; Elizabeth Berry-Kravis; Adria Bodell; Kira Apse; Robert Sean Hill; François Dubeau; F. Andermann; James Barkovich; Eva Andermann; Yin Yao Shugart; Pierre Thomas; Maurizio Viri; Pierangelo Veggiotti

Objective: To define the clinical, radiologic, and genetic features of periventricular heterotopia (PH) with Ehlers-Danlos syndrome (EDS). Methods: Exonic sequencing and single stranded conformational polymorphism (SSCP) analysis was performed on affected individuals. Linkage analysis using microsatellite markers on the X-chromosome was performed on a single pedigree. Western blotting evaluated for loss of filamin A (FLNA) protein and Southern blotting assessed for any potential chromosome rearrangement in this region. Results: The authors report two familial cases and nine additional sporadic cases of the EDS-variant form of PH, which is characterized by nodular brain heterotopia, joint hypermobility, and development of aortic dilatation in early adulthood. MRI typically demonstrated bilateral nodular PH, indistinguishable from PH due to FLNA mutations. Exonic sequencing or SSCP analyses of FLNA revealed a 2762 delG single base pair deletion in one affected female. Another affected female harbored a C116 single point mutation, resulting in an A39G change. A third affected female had a 4147 delG single base pair deletion. One pedigree with no detectable exonic mutation demonstrated positive linkage to the FLNA locus Xq28, an affected individual in this family also had no detectable FLNA protein, but no chromosomal rearrangement was detected. Conclusion: These results suggest that the Ehlers-Danlos variant of periventricular heterotopia (PH), in part, represents an overlapping syndrome with X-linked dominant PH due to filamin A mutations.


The New England Journal of Medicine | 2014

Somatic mutations in cerebral cortical malformations.

Saumya Shekhar Jamuar; Anh Thu N Lam; Martin Kircher; Alissa M. D'Gama; Jian Wang; Brenda J. Barry; Xiaochang Zhang; Robert Sean Hill; Jennifer N. Partlow; Aldo Rozzo; Sarah Servattalab; Bhaven K. Mehta; Meral Topçu; Dina Amrom; Eva Andermann; Bernard Dan; Elena Parrini; Renzo Guerrini; Ingrid E. Scheffer; Samuel F. Berkovic; Richard J. Leventer; Yiping Shen; Bai-Lin Wu; A. James Barkovich; Mustafa Sahin; Bernard S. Chang; Michael J. Bamshad; Deborah A. Nickerson; Jay Shendure; Annapurna Poduri

BACKGROUND Although there is increasing recognition of the role of somatic mutations in genetic disorders, the prevalence of somatic mutations in neurodevelopmental disease and the optimal techniques to detect somatic mosaicism have not been systematically evaluated. METHODS Using a customized panel of known and candidate genes associated with brain malformations, we applied targeted high-coverage sequencing (depth, ≥200×) to leukocyte-derived DNA samples from 158 persons with brain malformations, including the double-cortex syndrome (subcortical band heterotopia, 30 persons), polymicrogyria with megalencephaly (20), periventricular nodular heterotopia (61), and pachygyria (47). We validated candidate mutations with the use of Sanger sequencing and, for variants present at unequal read depths, subcloning followed by colony sequencing. RESULTS Validated, causal mutations were found in 27 persons (17%; range, 10 to 30% for each phenotype). Mutations were somatic in 8 of the 27 (30%), predominantly in persons with the double-cortex syndrome (in whom we found mutations in DCX and LIS1), persons with periventricular nodular heterotopia (FLNA), and persons with pachygyria (TUBB2B). Of the somatic mutations we detected, 5 (63%) were undetectable with the use of traditional Sanger sequencing but were validated through subcloning and subsequent sequencing of the subcloned DNA. We found potentially causal mutations in the candidate genes DYNC1H1, KIF5C, and other kinesin genes in persons with pachygyria. CONCLUSIONS Targeted sequencing was found to be useful for detecting somatic mutations in patients with brain malformations. High-coverage sequencing panels provide an important complement to whole-exome and whole-genome sequencing in the evaluation of somatic mutations in neuropsychiatric disease. (Funded by the National Institute of Neurological Disorders and Stroke and others.).


Neurology | 1999

Clinical and imaging features of cortical malformations in childhood

Richard J. Leventer; E.M. Phelan; Lee Coleman; Michael Kean; Graeme D. Jackson; A. S. Harvey

Objective: To determine the types, relative frequencies, clinical features, and MRI characteristics of malformations of cortical development (MCD) occurring in a cohort of children referred to a tertiary pediatric center. Methods: Original MR images were reviewed by two investigators, who were blinded to clinical details, to determine the elemental imaging features of each malformation and to label these malformations according to an existing system of classification. Clinical information was collected by a review of hospital records. Results: A total of 109 children with MCD were identified. There were 58 boys and 51 girls, age 8 days to 18 years at initial imaging (mean age, 5 years). Seizures were present in 75%, developmental delay or intellectual disability in 68%, abnormal neurologic findings in 48%, and congenital anomalies apart from the CNS malformation in 18%. The main malformations identified were heterotopic gray matter (19%), cortical tubers (17%), focal cortical dysplasia (16%), polymicrogyria (16%), agyria/pachygyria (15%), schizencephaly/cleft (5%), transmantle dysplasia (5%), and hemimegalencephaly (4%). Eight patients had features of more than one malformation. Most lesions were multilobar (47%), with the frontal lobe being the most common lobe involved (78%). A total of 68% of patients had other cerebral malformations including ventricular dilatation or dysmorphism (46%) and abnormalities of the corpus callosum (29%). Conclusions: This study illustrates the spectrum of MCD in a pediatric cohort and highlights some of the differences between pediatric and adult patients. Patients with MCD presenting in childhood have a wider spectrum of malformations and more varied, often more severe, clinical manifestations. The lesions are frequently multifocal or generalized and many are associated with noncortical developmental brain anomalies.


Brain | 2010

Clinical and Imaging Heterogeneity of Polymicrogyria: A Study of 328 Patients.

Richard J. Leventer; Anna Jansen; Daniela T. Pilz; Neil Stoodley; Carla Marini; François Dubeau; Jodie P. Malone; L. Anne Mitchell; Simone Mandelstam; Ingrid E. Scheffer; Samuel F. Berkovic; Frederick Andermann; Eva Andermann; Renzo Guerrini; William B. Dobyns

Polymicrogyria is one of the most common malformations of cortical development and is associated with a variety of clinical sequelae including epilepsy, intellectual disability, motor dysfunction and speech disturbance. It has heterogeneous clinical manifestations and imaging patterns, yet large cohort data defining the clinical and imaging spectrum and the relative frequencies of each subtype are lacking. The aims of this study were to determine the types and relative frequencies of different polymicrogyria patterns, define the spectrum of their clinical and imaging features and assess for clinical/imaging correlations. We studied the imaging features of 328 patients referred from six centres, with detailed clinical data available for 183 patients. The ascertainment base was wide, including referral from paediatricians, geneticists and neurologists. The main patterns of polymicrogyria were perisylvian (61%), generalized (13%), frontal (5%) and parasagittal parieto-occipital (3%), and in 11% there was associated periventricular grey matter heterotopia. Each of the above patterns was further divided into subtypes based on distinguishing imaging characteristics. The remaining 7% were comprised of a number of rare patterns, many not described previously. The most common clinical sequelae were epileptic seizures (78%), global developmental delay (70%), spasticity (51%) and microcephaly (50%). Many patients presented with neurological or developmental abnormalities prior to the onset of epilepsy. Patients with more extensive patterns of polymicrogyria presented at an earlier age and with more severe sequelae than those with restricted or unilateral forms. The median age at presentation for the entire cohort was 4 months with 38% presenting in either the antenatal or neonatal periods. There were no significant differences between the prevalence of epilepsy for each polymicrogyria pattern, however patients with generalized and bilateral forms had a lower age at seizure onset. There was significant skewing towards males with a ratio of 3:2. This study expands our understanding of the spectrum of clinical and imaging features of polymicrogyria. Progression from describing imaging patterns to defining anatomoclinical syndromes will improve the accuracy of prognostic counselling and will aid identification of the aetiologies of polymicrogyria, including genetic causes.


American Journal of Medical Genetics Part A | 2006

Polymicrogyria and deletion 22q11.2 syndrome: window to the etiology of a common cortical malformation.

Nathaniel H. Robin; Clare Taylor; Donna M. McDonald-McGinn; Elaine H. Zackai; Peter M. Bingham; Kevin Collins; Dawn Earl; Deepak Gill; Tiziana Granata; Renzo Guerrini; Naomi Katz; Virginia E. Kimonis; Jean-Pierre Lin; David R. Lynch; Shehla Mohammed; R.F. Massey; Marie McDonald; R. Curtis Rogers; Miranda Splitt; Cathy A. Stevens; Marc D. Tischkowitz; Neil Stoodley; Richard J. Leventer; Daniela T. Pilz; William B. Dobyns

Several brain malformations have been described in rare patients with the deletion 22q11.2 syndrome (DEL22q11) including agenesis of the corpus callosum, pachygyria or polymicrogyria (PMG), cerebellar anomalies and meningomyelocele, with PMG reported most frequently. In view of our interest in the causes of PMG, we reviewed clinical data including brain‐imaging studies on 21 patients with PMG associated with deletion 22q11.2 and another 11 from the literature. We found that the cortical malformation consists of perisylvian PMG of variable severity and frequent asymmetry with a striking predisposition for the right hemisphere (P = 0.008). This and other observations suggest that the PMG may be a sequela of abnormal embryonic vascular development rather than a primary brain malformation. We also noted mild cerebellar hypoplasia or mega‐cisterna magna in 8 of 24 patients. Although this was not the focus of the present study, mild cerebellar anomalies are probably the most common brain malformation associated with DEL22q11.


American Journal of Human Genetics | 2013

Mutations in DARS Cause Hypomyelination with Brain Stem and Spinal Cord Involvement and Leg Spasticity

Ryan J. Taft; Adeline Vanderver; Richard J. Leventer; Stephen Damiani; Cas Simons; Sean M. Grimmond; David Miller; Johanna L. Schmidt; Paul J. Lockhart; Kate Pope; Kelin Ru; Joanna Crawford; Tena Rosser; Irenaeus F.M. de Coo; Monica Juneja; Ishwar C. Verma; Prab Prabhakar; Susan Blaser; Julian Raiman; Petra J. W. Pouwels; Marianna R. Bevova; Truus E. M. Abbink; Marjo S. van der Knaap; Nicole I. Wolf

Inherited white-matter disorders are a broad class of diseases for which treatment and classification are both challenging. Indeed, nearly half of the children presenting with a leukoencephalopathy remain without a specific diagnosis. Here, we report on the application of high-throughput genome and exome sequencing to a cohort of ten individuals with a leukoencephalopathy of unknown etiology and clinically characterized by hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL), as well as the identification of compound-heterozygous and homozygous mutations in cytoplasmic aspartyl-tRNA synthetase (DARS). These mutations cause nonsynonymous changes to seven highly conserved amino acids, five of which are unchanged between yeast and man, in the DARS C-terminal lobe adjacent to, or within, the active-site pocket. Intriguingly, HBSL bears a striking resemblance to leukoencephalopathy with brain stem and spinal cord involvement and elevated lactate (LBSL), which is caused by mutations in the mitochondria-specific DARS2, suggesting that these two diseases might share a common underlying molecular pathology. These findings add to the growing body of evidence that mutations in tRNA synthetases can cause a broad range of neurologic disorders.


Genetics in Medicine | 2016

A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders.

Zornitza Stark; Tiong Yang Tan; Belinda Chong; Gemma R. Brett; Patrick Yap; Maie Walsh; Alison Yeung; Heidi Peters; Dylan Mordaunt; Shannon Cowie; David J. Amor; Ravi Savarirayan; George McGillivray; Lilian Downie; Paul G. Ekert; Christiane Theda; Paul A. James; Joy Yaplito-Lee; Monique M. Ryan; Richard J. Leventer; Emma Creed; Ivan Macciocca; Katrina M. Bell; Alicia Oshlack; Simon Sadedin; Peter Georgeson; Charlotte Anderson; Natalie P. Thorne; Clara Gaff; Susan M. White

Purpose:To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease.Methods:Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated.Results:Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies.Conclusions:This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090–1096.

Collaboration


Dive into the Richard J. Leventer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Pope

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

William B. Dobyns

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie Bahlo

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicki Anderson

Royal Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge