Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. P. Brown is active.

Publication


Featured researches published by Richard J. P. Brown.


Journal of Virology | 2006

Identification of Conserved Residues in the E2 Envelope Glycoprotein of the Hepatitis C Virus That Are Critical for CD81 Binding

Ania M. Owsianka; Judith M. Timms; Alexander W. Tarr; Richard J. P. Brown; Timothy P. Hickling; Aleksandra Szwejk; Krystyna Bieńkowska-Szewczyk; Brian J. Thomson; Arvind H. Patel; Jonathan K. Ball

ABSTRACT Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2. To better define specific residues involved in receptor binding, a panel of mutants of HCV envelope proteins was generated, where conserved residues within putative CD81 binding regions were sequentially mutated to alanine. Mutant proteins were tested for binding to a panel of monoclonal antibodies and CD81 and for their ability to form noncovalent heterodimers and confer infectivity in the retroviral pseudoparticle (HCVpp) assay. Detection by conformation-sensitive monoclonal antibodies indicated that the mutant proteins were correctly folded. Mutant proteins fell into three groups: those that bound CD81 and conferred HCVpp infectivity, those that abrogated both CD81 binding and HCVpp infectivity, and a final group containing mutants that were able to bind CD81 but were noninfectious in the HCVpp assay. Specific amino acids conserved across all genotypes that were critical for CD81 binding were W420, Y527, W529, G530, and D535. These data significantly increase our understanding of the CD81 receptor-E2 binding process.


Hepatology | 2006

Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33

Alexander W. Tarr; Ania M. Owsianka; Judith M. Timms; C. Patrick McClure; Richard J. P. Brown; Timothy P. Hickling; Thomas Pietschmann; Ralf Bartenschlager; Arvind H. Patel; Jonathan K. Ball

The mouse monoclonal antibody (MAb) AP33, recognizing a 12 amino acid linear epitope in the hepatitis C virus (HCV) E2 glycoprotein, potently neutralizes retroviral pseudoparticles (HCVpp) carrying genetically diverse HCV envelope glycoproteins. Consequently, this antibody and its epitope are highly relevant to vaccine design and immunotherapeutic development. The rational design of immunogens capable of inducing antibodies that target the AP33 epitope will benefit from a better understanding of this region. We have used complementary approaches, which include random peptide phage display mapping and alanine scanning mutagenesis, to identify residues in the HCV E2 protein critical for MAb AP33 binding. Four residues crucial for MAb binding were identified, which are highly conserved in HCV E2 sequences. Three residues within E2 were shown to be critical for binding to the rat MAb 3/11, which previously was shown to recognize the same 12 amino acid E2 epitope as MAb AP33 antibody, although only two of these were shared with MAb AP33. MAb AP33 bound to a panel of functional E2 proteins representative of genotypes 1‐6 with higher affinity than MAb 3/11. Similarly, MAb AP33 was consistently more efficient at neutralizing infectivity by diverse HCVpp than MAb 3/11. Importantly, MAb AP33 was also able to neutralize the cell culture infectious HCV clone JFH‐1. In conclusion, these data identify important protective determinants and will greatly assist the development of vaccine candidates based on the AP33 epitope. (HEPATOLOGY 2006;43:492–601.)


Journal of Virology | 2006

Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis.

Paul J. Peters; W. Matthew Sullivan; Jayanta Bhattacharya; Richard J. P. Brown; Katherine Luzuriaga; Jeanne E. Bell; Peter Simmonds; K. Jonathan Ball; Paul R. Clapham

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) R5 isolates that predominantly use CCR5 as a coreceptor are frequently described as macrophage tropic. Here, we compare macrophage tropism conferred by HIV-1 R5 envelopes that were derived directly by PCR from patient tissue. This approach avoids potentially selective culture protocols used in virus isolation. Envelopes were amplified (i) from blood and semen of adult patients and (ii) from plasma of pediatric patients. The phenotypes of these envelopes were compared to those conferred by an extended panel of envelopes derived from brain and lymph node that we reported previously. Our results show that R5 envelopes vary by up to 1,000-fold in their capacity to confer infection of primary macrophages. Highly macrophage-tropic envelopes were predominate in brain but were infrequent in semen, blood, and lymph node samples. We also confirmed that the presence of N283 in the C2 CD4 binding site of gp120 is associated with HIV-1 envelopes from the brain but absent from macrophage-tropic envelopes amplified from blood and semen. Finally, we compared infection of macrophages, CD4+ T cells, and peripheral blood mononuclear cells (PBMCs) conferred by macrophage-tropic and non-macrophage-tropic envelopes in the context of full-length replication competent viral clones. Non-macrophage-tropic envelopes conferred low-level infection of macrophages yet infected CD4+ T cells and PBMCs as efficiently as highly macrophage-tropic brain envelopes. The lack of macrophage tropism for the majority of the envelopes amplified from lymph node, blood, and semen is striking and contrasts with the current consensus that R5 primary isolates are generally macrophage tropic. The extensive variation in R5 tropism reported here is likely to have an important impact on pathogenesis and on the capacity of HIV-1 to transmit.


Retrovirology | 2008

Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors

Paul J. Peters; W. Matthew Sullivan; Richard J. P. Brown; Katherine Luzuriaga; James E. Robinson; Dennis R. Burton; Jeanne E. Bell; Peter Simmonds; K. Jonathan Ball; Paul R. Clapham

BackgroundHIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node.ResultsR5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542), but with increased resistance to the anti-CD4 monoclonal antibody (mab), Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120.ConclusionVariation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.


Gut | 2014

Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells

Anggakusuma; Che C. Colpitts; Luis M. Schang; Heni Rachmawati; Anne Frentzen; Stephanie Pfaender; Patrick Behrendt; Richard J. P. Brown; Dorothea Bankwitz; Joerg Steinmann; Michael Ott; Philip Meuleman; Charles M. Rice; Alexander Ploss; Thomas Pietschmann; Eike Steinmann

Objective Hepatitis C virus (HCV) infection causes severe liver disease and affects more than 160 million individuals worldwide. People undergoing liver organ transplantation face universal re-infection of the graft. Therefore, affordable antiviral strategies targeting the early stages of infection are urgently needed to prevent the recurrence of HCV infection. The aim of the study was to determine the potency of turmeric curcumin as an HCV entry inhibitor. Design The antiviral activity of curcumin and its derivatives was evaluated using HCV pseudo-particles (HCVpp) and cell-culture-derived HCV (HCVcc) in hepatoma cell lines and primary human hepatocytes. The mechanism of action was dissected using R18-labelled virions and a membrane fluidity assay. Results Curcumin treatment had no effect on HCV RNA replication or viral assembly/release. However, co-incubation of HCV with curcumin potently inhibited entry of all major HCV genotypes. Similar antiviral activities were also exerted by other curcumin derivatives but not by tetrahydrocurcumin, suggesting the importance of α,β-unsaturated ketone groups for the antiviral activity. Expression levels of known HCV receptors were unaltered, while pretreating the virus with the compound reduced viral infectivity without viral lysis. Membrane fluidity experiments indicated that curcumin affected the fluidity of the HCV envelope resulting in impairment of viral binding and fusion. Curcumin has also been found to inhibit cell-to-cell transmission and to be effective in combination with other antiviral agents. Conclusions Turmeric curcumin inhibits HCV entry independently of the genotype and in primary human hepatocytes by affecting membrane fluidity thereby impairing virus binding and fusion.


Hepatology | 2015

Clinical course of infection and viral tissue tropism of hepatitis C virus–like nonprimate hepaciviruses in horses

Stephanie Pfaender; Jessika M.V. Cavalleri; Stephanie Walter; Juliane Doerrbecker; Benedetta Campana; Richard J. P. Brown; Peter D. Burbelo; Alexander Postel; Kerstin Hahn; Anggakusuma; Nina Riebesehl; Wolfgang Baumgärtner; Paul Becher; Markus H. Heim; Thomas Pietschmann; Karsten Feige; Eike Steinmann

Hepatitis C virus (HCV) has a very narrow species and tissue tropism and efficiently replicates only in humans and the chimpanzee. Recently, several studies identified close relatives to HCV in different animal species. Among these novel viruses, the nonprimate hepaciviruses (NPHV) that infect horses are the closest relatives of HCV described to date. In this study, we analyzed the NPHV prevalence in northern Germany and characterized the clinical course of infection and viral tissue tropism to explore the relevance of HCV‐related horse viruses as a model for HCV infection. We found that approximately 31.4% of 433 horses were seropositive for antibodies (Abs) against NPHV and approximately 2.5% carried viral RNA. Liver function analyses revealed no indication for hepatic impairment in 7 of 11 horses. However, serum gamma‐glutamyl transferase (GGT) concentrations were mildly elevated in 3 horses, and 1 horse displayed even highly elevated GGT levels. Furthermore, we observed that NPHV infection could be cleared in individual horses with a simultaneous emergence of nonstructural (NS)3‐specific Abs and transient elevation of serum levels of liver‐specific enzymes indicative for a hepatic inflammation. In other individual horses, chronic infections could be observed with the copresence of viral RNA and NS3‐specific Abs for over 6 months. For the determination of viral tissue tropism, we analyzed different organs and tissues of 1 NPHV‐positive horse using quantitative real‐time polymerase chain reaction and fluorescent in situ hydridization and detected NPHV RNA mainly in the liver and at lower amounts in other organs. Conclusion: Similar to HCV infections in humans, this work demonstrates acute and chronic stages of NPHV infection in horses with viral RNA detectable predominantly within the liver. (Hepatology 2015;61:448‐459)


Journal of Virology | 2012

Naturally Occurring Antibodies That Recognize Linear Epitopes in the Amino Terminus of the Hepatitis C Virus E2 Protein Confer Noninterfering, Additive Neutralization

Alexander W. Tarr; Richard A. Urbanowicz; Dhanya Jayaraj; Richard J. P. Brown; Jane A. McKeating; William L. Irving; Jonathan K. Ball

ABSTRACT Chronic hepatitis C virus (HCV) infection can persist even in the presence of a broadly neutralizing antibody response. Various mechanisms that underpin viral persistence have been proposed, and one of the most recently proposed mechanisms is the presence of interfering antibodies that negate neutralizing responses. Specifically, it has been proposed that antibodies targeting broadly neutralizing epitopes located within a region of E2 encompassing residues 412 to 423 can be inhibited by nonneutralizing antibodies binding to a less conserved region encompassing residues 434 to 446. To investigate this phenomenon, we characterized the neutralizing and inhibitory effects of human-derived affinity-purified immunoglobulin fractions and murine monoclonal antibodies and show that antibodies to both regions neutralize HCV pseudoparticle (HCVpp) and cell culture-infectious virus (HCVcc) infection albeit with different breadths and potencies. Epitope mapping revealed the presence of overlapping but distinct epitopes in both regions, which may explain the observed differences in neutralizing phenotypes. Crucially, we failed to demonstrate any inhibition between these two groups of antibodies, suggesting that interference by nonneutralizing antibodies, at least for the region encompassing residues 434 to 446, does not provide a mechanism for HCV persistence in chronically infected individuals.


Journal of Virology | 2011

Intercompartmental Recombination of HIV-1 Contributes to env Intrahost Diversity and Modulates Viral Tropism and Sensitivity to Entry Inhibitors

Richard J. P. Brown; Paul J. Peters; C. Caron; Maria Paz Gonzalez-Perez; L. Stones; K. Pondei; C. P. McClure; G. Alemnji; Stephen Taylor; Paul M. Sharp; Paul R. Clapham; Jonathan K. Ball

ABSTRACT HIV-1 circulates within an infected host as a genetically heterogeneous viral population. Viral intrahost diversity is shaped by substitutional evolution and recombination. Although many studies have speculated that recombination could have a significant impact on viral phenotype, this has never been definitively demonstrated. We report here phylogenetic and subsequent phenotypic analyses of envelope genes obtained from HIV-1 populations present in different anatomical compartments. Assessment of env compartmentalization from immunologically discrete tissues was assessed utilizing a single genome amplification approach, minimizing in vitro-generated artifacts. Genetic compartmentalization of variants was frequently observed. In addition, multiple incidences of intercompartment recombination, presumably facilitated by low-level migration of virus or infected cells between different anatomic sites and coinfection of susceptible cells by genetically divergent strains, were identified. These analyses demonstrate that intercompartment recombination is a fundamental evolutionary mechanism that helps to shape HIV-1 env intrahost diversity in natural infection. Analysis of the phenotypic consequences of these recombination events showed that genetic compartmentalization often correlates with phenotypic compartmentalization and that intercompartment recombination results in phenotype modulation. This represents definitive proof that recombination can generate novel combinations of phenotypic traits which differ subtly from those of parental strains, an important phenomenon that may have an impact on antiviral therapy and contribute to HIV-1 persistence in vivo.


Emerging microbes & infections | 2014

Natural reservoirs for homologs of hepatitis C virus.

Stephanie Pfaender; Richard J. P. Brown; Thomas Pietschmann; Eike Steinmann

Hepatitis C virus is considered a major public health problem, infecting 2%–3% of the human population. Hepatitis C virus infection causes acute and chronic liver disease, including chronic hepatitis, cirrhosis and hepatocellular carcinoma. In fact, hepatitis C virus infection is the most frequent indication for liver transplantation and a vaccine is not available. Hepatitis C virus displays a narrow host species tropism, naturally infecting only humans, although chimpanzees are also susceptible to experimental infection. To date, there is no evidence for an animal reservoir of viruses closely related to hepatitis C virus which may have crossed the species barrier to cause disease in humans and resulted in the current pandemic. In fact, due to this restricted host range, a robust immunocompetent small animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control and prophylactic vaccine development. Recently, several studies discovered new viruses related to hepatitis C virus, belonging to the hepaci- and pegivirus genera, in small wild mammals (rodents and bats) and domesticated animals which live in close contact with humans (dogs and horses). Genetic and biological characterization of these newly discovered hepatitis C virus-like viruses infecting different mammals will contribute to our understanding of the origins of hepatitis C virus in humans and enhance our ability to study pathogenesis and immune responses using tractable animal models. In this review article, we start with an introduction on the genetic diversity of hepatitis C virus and then focus on the newly discovered viruses closely related to hepatitis C virus. Finally, we discuss possible theories about the origin of this important viral human pathogen.


Gut | 2016

In vivo evidence for ribavirin-induced mutagenesis of the hepatitis E virus genome

Daniel Todt; Anett Gisa; Aleksandar Radonić; Andreas Nitsche; Patrick Behrendt; P.V. Suneetha; Sven Pischke; B. Bremer; Richard J. P. Brown; M.P. Manns; Markus Cornberg; C.-Thomas Bock; Eike Steinmann; H. Wedemeyer

Objective Hepatitis E virus (HEV) infection can take chronic courses in immunocompromised patients potentially leading to liver cirrhosis and liver failure. Ribavirin (RBV) is currently the only treatment option for many patients, but treatment failure can occur which has been associated with the appearance of a distinct HEV polymerase mutant (G1634R). Here, we performed a detailed analysis of HEV viral intrahost evolution during chronic hepatitis E infections. Design Illumina deep sequencing was performed for the detection of intrahost variation in the HEV genome of chronically infected patients. Novel polymerase mutants were investigated in vitro using state-of-the-art HEV cell culture models. Results Together, these data revealed that (1) viral diversity differed markedly between patients but did not show major intraindividual short-term variations in untreated patients with chronic hepatitis E, (2) RBV therapy was associated with an increase in viral heterogeneity which was reversible when treatment was stopped, (3) the G1634R mutant was detectable as a minor population prior to therapy in patients who subsequently failed to achieve a sustained virological response to RBV therapy and (4) in addition to G1634R further dominant variants in the polymerase region emerged, impacting HEV replication efficiency in vitro. Conclusions In summary, this first investigation of intrahost HEV population evolution indicates that RBV causes HEV mutagenesis in treated patients and that an emergence of distinct mutants within the viral population occurs during RBV therapy. We also suggest that next-generation sequencing could be useful to guide personalised antiviral strategies.

Collaboration


Dive into the Richard J. P. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Todt

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William L. Irving

Nottingham University Hospitals NHS Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge