Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Reid-Smith is active.

Publication


Featured researches published by Richard J. Reid-Smith.


Journal of Clinical Microbiology | 2003

Association of Genomic O Island 122 of Escherichia coli EDL 933 with Verocytotoxin-Producing Escherichia coli Seropathotypes That Are Linked to Epidemic and/or Serious Disease

Mohamed A. Karmali; Mariola Mascarenhas; Songhai Shen; Kim Ziebell; Shelley T. Johnson; Richard J. Reid-Smith; Judith Isaac-Renton; Clifford G. Clark; Kris Rahn; James B. Kaper

ABSTRACT The distribution of EDL 933 O island 122 (OI-122) was investigated in 70 strains of Verocytotoxin-producing Escherichia coli (VTEC) of multiple serotypes that were classified into five “seropathotypes” (A through E) based on the reported occurrence of serotypes in human disease, in outbreaks, and/or in the hemolytic-uremic syndrome (HUS). Seropathotype A comprised 10 serotype O157:H7 and 3 serotype O157:NM strains. Seropathotype B (associated with outbreaks and HUS but less commonly than serotype O157:H7) comprised three strains each of serotypes O26:H11, O103:H2, O111:NM, O121:H19, and O145:NM. Seropathotype C comprised four strains each of serotypes O91:H21 and O113:H21 and eight strains of other serotypes that have been associated with sporadic HUS but not typically with outbreaks. Seropathotype D comprised 14 strains of serotypes that have been associated with diarrhea but not with outbreaks or HUS, and seropathotype E comprised animal VTEC strains of serotypes not implicated in human disease. All strains were tested for four EDL 933 OI-122 virulence genes (Z4321, Z4326, Z4332, and Z4333) by PCR. Negative PCRs were confirmed by Southern hybridization. Overall, 28 (40%) strains contained OI-122 (positive for all four virulence genes), 27 (38.6%) contained an “incomplete” OI-122 (positive for one to three genes), and 15 (21.4%) strains did not contain OI-122. The seropathotype distribution of complete OI-122 was as follows: 100% for seropathotype A, 60% for B, 36% for C, 15% for D, and 0% for E. The differences in the frequency of OI-122 between seropathotypes A, B, and C (associated with HUS) and seropathotypes D and E (not associated with HUS) and between seropathotypes A and B (associated with epidemic disease) and seropathotypes C, D, and E (not associated with epidemic disease) were highly significant (P < 0.0001).


Applied and Environmental Microbiology | 2005

Antimicrobial Resistance and Virulence Genes of Escherichia coli Isolates from Swine in Ontario

Patrick Boerlin; Rebeccah Travis; Carlton L. Gyles; Richard J. Reid-Smith; Nicol Janecko Heather Lim; Vivian Nicholson; Scott A. McEwen; Robert M. Friendship; Marie Archambault

ABSTRACT A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by ≥8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (≤3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.


Applied and Environmental Microbiology | 2009

Antimicrobial Resistance in Escherichia coli Isolates from Swine and Wild Small Mammals in the Proximity of Swine Farms and in Natural Environments in Ontario, Canada

Gosia K. Kozak; Patrick Boerlin; Nicol Janecko; Richard J. Reid-Smith; Claire M. Jardine

ABSTRACT Wild animals not normally exposed to antimicrobial agents can acquire antimicrobial agent-resistant bacteria through contact with humans and domestic animals and through the environment. In this study we assessed the frequency of antimicrobial resistance in generic Escherichia coli isolates from wild small mammals (mice, voles, and shrews) and the effect of their habitat (farm or natural area) on antimicrobial resistance. Additionally, we compared the types and frequency of antimicrobial resistance in E. coli isolates from swine on the same farms from which wild small mammals were collected. Animals residing in the vicinity of farms were five times more likely to carry E. coli isolates with tetracycline resistance determinants than animals living in natural areas; resistance to tetracycline was also the most frequently observed resistance in isolates recovered from swine (83%). Our results suggest that E. coli isolates from wild small mammals living on farms have higher rates of resistance and are more frequently multiresistant than E. coli isolates from environments, such as natural areas, that are less impacted by human and agricultural activities. No Salmonella isolates were recovered from any of the wild small mammal feces. This study suggests that close proximity to food animal agriculture increases the likelihood that E. coli isolates from wild animals are resistant to some antimicrobials, possibly due to exposure to resistant E. coli isolates from livestock, to the resistance genes of these isolates, or to antimicrobials through contact with animal feed.


Applied and Environmental Microbiology | 2009

Detection and Enumeration of Clostridium difficile Spores in Retail Beef and Pork

J. Scott Weese; Brent P. Avery; Joyce Rousseau; Richard J. Reid-Smith

ABSTRACT Recent studies have identified Clostridium difficile in food animals and retail meat, and concern has been raised about the potential for food to act as a source of C. difficile infection in humans. Previous studies of retail meat have relied on enrichment culture alone, thereby preventing any assessment of the level of contamination in meat. This study evaluated the prevalence of C. difficile contamination of retail ground beef and ground pork in Canada. Ground beef and ground pork were purchased from retail outlets in four Canadian provinces. Quantitative and enrichment culture was performed. Clostridium difficile was isolated from 28/230 (12%) samples overall: 14/115 (12%) ground beef samples and 14/115 (12%) ground pork samples (P = 1.0). For ground beef, 10/14 samples (71%) were positive by enrichment culture only. Of the 4 ground beef samples that were positive by direct culture, 20 spores/g were present in 2 while 120 and 240 spores/g were present in 1 each. For ground pork, 10/14 (71%) samples were positive by enrichment culture only. Of the 4 ground pork samples that were positive by direct culture, 20 spores/g were present in 3 while 60 spores/g were present in 1. Ribotype 078 predominated, consistent with some previous studies of C. difficile in food animals. Ribotype 027/North American pulsotype 1 was also identified in both retail beef and pork. This study has identified relatively common contamination of retail ground beef and pork with C. difficile spores; however, the levels of contamination were very low.


Emerging Infectious Diseases | 2009

Possible seasonality of Clostridium difficile in retail meat, Canada.

Alexander Rodriguez-Palacios; Richard J. Reid-Smith; H. R. Staempfli; Danielle Daignault; Nicol Janecko; Brent P. Avery; Hayley Martin; Angela D. Thomspon; L. Clifford McDonald; Brandi Limbago; J. Scott Weese

We previously reported Clostridium difficile in 20% of retail meat in Canada, which raised concerns about potential foodborne transmissibility. Here, we studied the genetic diversity of C. difficile in retail meats, using a broad Canadian sampling infrastructure and 3 culture methods. We found 6.1% prevalence and indications of possible seasonality (highest prevalence in winter).


Clinical Infectious Diseases | 2006

Human Health Implications of Salmonella-Contaminated Natural Pet Treats and Raw Pet Food

Rita Finley; Richard J. Reid-Smith; J. Scott Weese; Frederick J. Angulo

Human salmonellosis occurs mainly as a result of handling or consuming contaminated food products, with a small percentage of cases being related to other, less well-defined exposures, such as contact with companion animals and natural pet treats. The increasing popularity of raw food diets for companion animals is another potential pet-associated source of Salmonella organisms; however, no confirmed cases of human salmonellosis have been associated with these diets. Pets that consume contaminated pet treats and raw food diets can be colonized with Salmonella organisms without exhibiting clinical signs, making them a possible hidden source of contamination in the household. Pet owners can reduce their risk of acquiring Salmonella organisms by not feeding natural pet treats and raw food diets to their pets, whereas individuals who investigate cases of salmonellosis or interpret surveillance data should be aware of these possible sources of Salmonella organisms.


Emerging Infectious Diseases | 2012

Chicken as Reservoir for Extraintestinal Pathogenic Escherichia coli in Humans, Canada

Catherine Racicot Bergeron; Catharine Prussing; Patrick Boerlin; Danielle Daignault; Lucie Dutil; Richard J. Reid-Smith; George G. Zhanel; Amee R. Manges

Urinary tract infections can be difficult and expensive to treat. Most (85%) are caused by bacteria called E. coli. Historically, doctors have believed that these urinary tract E. coli came from the patient’s own intestines. But recently, Canadian researchers discovered that not only can these E. coli come from outside the patient’s intestines, they can actually come from outside the patient: from food. After comparing the genetic makeup of E. coli from human urinary tract infections with E. coli from retail meat (chicken, beef, and pork), they concluded that chickens are a likely source of E. coli and that the infections probably come directly from the chickens themselves, not from human contamination during food processing. Therefore, prevention of E. coli urinary tract infections in people might need to start on chicken farms.


Javma-journal of The American Veterinary Medical Association | 2009

Incidence of acquisition of methicillin-resistant Staphylococcus aureus, Clostridium difficile, and other health-care–associated pathogens by dogs that participate in animal-assisted interventions

Sandra L. Lefebvre; Richard J. Reid-Smith; David Waltner-Toews; J. Scott Weese

OBJECTIVE To determine whether dogs that visited human health-care facilities were at greater risk of acquiring certain health-care-associated pathogens, compared with dogs performing animal-assisted interventions in other settings, and to identify specific behaviors of dogs associated with an increased risk of acquiring these pathogens. DESIGN Prospective cohort and nested case-control studies. ANIMALS 96 dogs that visited human health-care facilities and 98 dogs involved in other animal-assisted interventions. PROCEDURES Fecal samples and nasal swab specimens were collected from dogs at the time of recruitment and every 2 months for 1 year and were tested for methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, and other selected bacteria. Information was also obtained on facilities visited during animal-assisted interventions, dog diet, dog illnesses, and antimicrobial use within the home. At the end of the study, dog handlers were asked about the behavior of their dogs during visits to health-care facilities. RESULTS Rates of acquisition of MRSA and C difficile were 4.7 and 2.4 times as high, respectively, among dogs that visited human health-care facilities, compared with rates among dogs involved in other animal-assisted interventions. Among dogs that visited human health-care facilities, those that licked patients or accepted treats during visits were more likely to be positive for MRSA and C difficile than were dogs that did not lick patients or accept treats. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that dogs that visited human health-care facilities were at risk of acquiring MRSA and C difficile, particularly when they licked patients or accepted treats during visits.


Applied and Environmental Microbiology | 2009

Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs

Leigh B. Rosengren; Cheryl Waldner; Richard J. Reid-Smith

ABSTRACT Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotypic resistance to at least one other drug, and every association found that the probability of observing the outcome resistance was increased by the presence of the predictor resistance. With one exception, each statistical association that was identified between a pair of resistance genes had a corresponding significant association identified between the phenotypes mediated by those genes. This suggests that associations between resistance phenotypes might predict coselection. If this hypothesis is confirmed, evaluation of the associations between resistance phenotypes could improve our knowledge of coselection dynamics and provide a cost-effective way to evaluate existing data until large-scale genotypic data collection becomes feasible. This could enable policy makers and users of antimicrobials to consider coselection in antimicrobial use decisions. This study also considered the unconditional relationships between resistance and virulence genes in E. coli from healthy pigs (aidA-1, eae, elt, estA, estB, fedA1, stx1, and stx2). Positive statistical associations would suggest that antimicrobial use may select for virulence in bacteria that may contaminate food or cause diarrhea in pigs. Fortunately, the odds of detecting a virulence gene were rarely increased by the presence of an antimicrobial resistance gene. This suggests that on-farm antimicrobial use did not select for the examined virulence factors in E. coli carried by this population of healthy pigs.


Zoonoses and Public Health | 2011

Evaluation of pet-related management factors and the risk of Salmonella spp. carriage in pet dogs from volunteer households in Ontario (2005-2006).

Erin K. Leonard; David L. Pearl; Rita Finley; Nicol Janecko; Andrew S. Peregrine; Richard J. Reid-Smith; J. S. Weese

The purpose of this study was to determine pet‐related management factors that may be associated with the presence of Salmonella spp. in feces of pet dogs from volunteer households. From October 2005 until May 2006, 138 dogs from 84 households in Ontario were recruited to participate in a cross‐sectional study. Five consecutive daily fecal samples were collected from each dog and enrichment culture for Salmonella spp. was performed. A higher than expected number of the dogs (23.2%; 32/138) had at least one fecal sample positive for Salmonella, and 25% (21/84) of the households had at least one dog shedding Salmonella. Twelve serotypes of Salmonella enterica subsp. enterica were identified, with the predominant serotypes being Typhimurium (33.3%; 13/39), Kentucky (15.4%; 6/39), Brandenburg (15.4%; 6/39) and Heidelberg (12.8%; 5/39). Univariable logistic regression models were created with a random effect for household to account for clustering. Statistically significant risk factors for a dog testing positive included having contact with livestock, receiving a probiotic in the previous 30 days, feeding a commercial or homemade raw food diet, feeding raw meat and eggs, feeding a homemade cooked diet, and having more than one dog in the household. In two‐variable models that controlled for feeding raw food, the non‐dietary variables were no longer statistically significant. These results highlight the potential public health risk of including raw animal products in canine diets.

Collaboration


Dive into the Richard J. Reid-Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Boerlin

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar

David L. Pearl

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrijana Rajić

Food and Agriculture Organization

View shared research outputs
Top Co-Authors

Avatar

J. Scott Weese

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Brent P. Avery

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Irwin

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge