Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Traystman is active.

Publication


Featured researches published by Richard J. Traystman.


Stroke | 1998

Gender-Linked Brain Injury in Experimental Stroke

Nabil J. Alkayed; Izumi Harukuni; Alane S. Kimes; Edythe D. London; Richard J. Traystman; Patricia D. Hurn

BACKGROUND AND PURPOSE Premenopausal women are at lower risk than men for stroke, but the comparative vulnerability to tissue injury once a cerebrovascular incident occurs is unknown. We hypothesized that female rats sustain less brain damage than males during experimental focal ischemia and that the gender difference in ischemic outcome can be eliminated by ovariectomy. METHODS Age-matched male (M), intact female (F), and ovariectomized female (O; plasma estradiol: 4.1+/-1.6 pg/mL compared with 7.4+/-1.5 in F and 4.0+/-1.1 in M) rats from two different strains, normotensive Wistar and stroke-prone spontaneously hypertensive rats, were subjected to 2 hours of intraluminal middle cerebral artery occlusion, followed by 22 hours of reperfusion. Cerebral blood flow (CBF) was monitored throughout the ischemic period by laser-Doppler flowmetry. Infarction volume in the cerebral cortex (Ctx) and caudoputamen (CP) was determined by 2,3,5-triphenyltetrazolium chloride staining. In a separate cohort of M, F, and O Wistar rats, absolute rates of regional CBF were measured at the end of the ischemic period by quantitative autoradiography using [14C]iodoantipyrine. RESULTS F rats of either strain had a smaller infarct size in Ctx and CP and a higher laser-Doppler flow during ischemia compared with respective M and O rats. Mean end-ischemic CBF was higher in F compared with M and O rats in CP, but not in Ctx. Cerebrocortical tissue volume with end-ischemic CBF < 10 mL/100 g/min was smaller in F than M rats, but not different from O rats. CONCLUSIONS We conclude that endogenous estrogen improves stroke outcome during vascular occlusion by exerting both neuroprotective and flow-preserving effects.


Nature Medicine | 2003

Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI

Jinyuan Zhou; Jean Francois Payen; David A. Wilson; Richard J. Traystman; Peter C.M. van Zijl

In the past decade, it has become possible to use the nuclear (proton, 1H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by exploiting the exchange between the hydrogen atoms of water and the amide hydrogen atoms of endogenous mobile cellular proteins and peptides. Although amide proton concentrations are in the millimolar range, we achieved a detection sensitivity of several percent on the water signal (molar concentration). The pH dependence of the signal was calibrated in situ, using phosphorus spectroscopy to determine pH, and proton exchange spectroscopy to measure the amide proton transfer rate. To show the potential of amide proton transfer (APT) contrast for detecting acute stroke, pH effects were noninvasively imaged in ischemic rat brain. This observation opens the possibility of using intrinsic pH contrast, as well as protein- and/or peptide-content contrast, as diagnostic tools in clinical imaging.


Nature Medicine | 1998

Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging

P.C.M van Zijl; S.E Eleff; John A. Ulatowski; J.M.E Oja; Aziz M. Uluğ; Richard J. Traystman; Risto A. Kauppinen

The ability to measure the effects of local alterations in blood flow, blood volume and oxygenation by nuclear magnetic resonance has stimulated a surge of activity in functional MRI of many organs, particularly in its application to cognitive neuroscience. However, the exact description of these effects in terms of the interrelations between the MRI signal changes and the basic physiological parameters has remained an elusive goal. We here present this fundamental theory for spin-echo signal changes in perfused tissue and validate it in vivo in the cat brain by using the physiological alteration of hypoxic hypoxia. These experiments show that high-resolution absolute blood volume images can be obtained by using hemoglobin as a natural intravascular contrast agent. The theory also correctly predicts the magnitude of spin-echo MRI signal intensity changes on brain activation and thereby provides a sound physiological basis for these types of studies.


Circulation | 1984

Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs.

J. R. Michael; Alan D. Guerci; Raymond C. Koehler; A Y Shi; Joshua E. Tsitlik; Nisha Chandra; E Niedermeyer; Mark C. Rogers; Richard J. Traystman; Myron L. Weisfeldt

The goals of this study were to quantify the effects of epinephrine on myocardial and cerebral blood flow during conventional cardiopulmonary resuscitation (CPR) and CPR with simultaneous chest compression-ventilation and to test the hypothesis that epinephrine would improve myocardial and cerebral blood flow by preventing collapse of intrathoracic arteries and by vasoconstricting other vascular beds, thereby increasing perfusion pressures. Cerebral and myocardial blood flow were measured by the radiolabeled microsphere technique, which we have previously validated during CPR. We studied the effect of epinephrine on established arterial collapse during CPR with simultaneous chest compression-ventilation with the abdomen bound or unbound. Epinephrine reversed arterial collapse, thereby eliminating the systolic gradient between aortic and carotid pressures and increasing cerebral perfusion pressure and cerebral blood flow while decreasing blood flow to other cephalic tissues. Epinephrine produced higher cerebral and myocardial perfusion pressures during CPR with simultaneous chest compression-ventilation when the abdomen was unbound rather than bound because abdominal binding increased intracranial and venous pressures. In other experiments we compared the effect of epinephrine on blood flow during 1 hr of either conventional CPR or with simultaneous chest compression-ventilation with the abdomen unbound. Epinephrine infusion during conventional CPR produced an average cerebral blood flow of 15 ml/min . 100 g (41 +/- 15% of control) and an average myocardial blood flow of 18 ml/min . 100 g (15 +/- 8% of control). In our previous studies, cerebral and myocardial blood flow were less than 3 +/- 1% of control during conventional CPR without epinephrine. Although flows during CPR with simultaneous chest compression-ventilation without epinephrine were initially higher than those during conventional CPR, arterial collapse developed after 20 min, limiting cerebral and myocardial blood flow. The use of epinephrine throughout 50 min of CPR with simultaneous chest compression-ventilation maintained cerebral blood flow at 22 +/- 2 ml/min . 100 g (73 +/- 25% control) and left ventricular blood flow at 38 +/- 9 ml/min . 100 g (28 +/- 8% control). The improved blood flows with epinephrine correlated with improved electroencephalographic activity and restoration of spontaneous circulation.(ABSTRACT TRUNCATED AT 400 WORDS)


Proceedings of the National Academy of Sciences of the United States of America | 2003

An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain

Mahmood Amiry-Moghaddam; Takashi Otsuka; Patricia D. Hurn; Richard J. Traystman; Finn-Mogens Haug; Stanley C. Froehner; Marvin E. Adams; John D. Neely; Peter Agre; Ole Petter Ottersen; Anish Bhardwaj

The water channel AQP4 is concentrated in perivascular and subpial membrane domains of brain astrocytes. These membranes form the interface between the neuropil and extracerebral liquid spaces. AQP4 is anchored at these membranes by its carboxyl terminus to α-syntrophin, an adapter protein associated with dystrophin. To test functions of the perivascular AQP4 pool, we studied mice homozygous for targeted disruption of the gene encoding α-syntrophin (α-Syn−/−). These animals show a marked loss of AQP4 from perivascular and subpial membranes but no decrease in other membrane domains, as judged by quantitative immunogold electron microscopy. In the basal state, perivascular and subpial astroglial end-feet were swollen in brains of α-Syn−/− mice compared to WT mice, suggesting reduced clearance of water generated by brain metabolism. When stressed by transient cerebral ischemia, brain edema was attenuated in α-Syn−/− mice, indicative of reduced water influx. Surprisingly, AQP4 was strongly reduced but α-syntrophin was retained in perivascular astroglial end-feet in WT mice examined 23 h after transient cerebral ischemia. Thus α-syntrophin-dependent anchoring of AQP4 is sensitive to ischemia, and loss of AQP4 from this site may retard the dissipation of postischemic brain edema. These studies identify a specific, syntrophin-dependent AQP4 pool that is expressed at distinct membrane domains and which mediates bidirectional transport of water across the brain–blood interface. The anchoring of AQP4 to α-syntrophin may be a target for treatment of brain edema, but therapeutic manipulations of AQP4 must consider the bidirectional water flux through this molecule.


Stroke | 1998

Estrogen-Mediated Neuroprotection After Experimental Stroke in Male Rats

Thomas J. K. Toung; Richard J. Traystman; Patricia D. Hurn

BACKGROUND AND PURPOSE We have previously shown that 17beta-estradiol reduces infarction volume in female rats. The present study determined whether single injection or chronic implantation of estrogen confers neuroprotection in male animals with middle cerebral artery occlusion (MCAO) and whether there is an interaction with endogenous testosterone. METHODS Male Wistar rats were treated with 2 hours of reversible MCAO. In protocol 1, acute versus chronic estrogen administration was examined in groups receiving the following: Premarin (USP) 1 mg/kg IV, immediately before MCAO (Acute, n=13, plasma estradiol=171+/-51 pg/mL); 7 days of 25 microg (E25, n=10, 10+/-3 pg/mL) or 100 microg 17beta-estradiol (E100, n=12, 69+/-20 pg/mL) by subcutaneous implant; or saline (SAL, n=21, 3+/-1 pg/mL). Laser-Doppler flowmetry was used to monitor the ipsilateral parietal cortex throughout the ischemic period and early reperfusion. At 22 hours of reperfusion, infarction volume was determined by 0 2,3,5-triphenyltetrazolium chloride staining and image analysis. In protocol 2, rats were castrated to deplete endogenous testosterone and then treated with estradiol implants: castration only (CAST, n= 13, estradiol=5+/-2 pg/mL), sham-operated (SHAM, n= 10, 4+/-2 pg/mL), estradiol implant 25 microg (CAST+E25, n=16, 7+/-2 pg/mL) or 100 microg (CAST+E100, n=14, 77+/-14 pg/mL). RESULTS Cortical infarct volumes were reduced in all estrogen-treated groups: Acute (21+/-4% of ipsilateral cortex), E25 (12+/-5%), and E100 (12+/-3%) relative to SAL (38+/-5%). Caudate infarction was similarly decreased: Acute (39+/-7% of ipsilateral striatum), E25 (25+/-7%), and E100 (34+/-6%) relative to SAL (63+/-4%). Castration did not alter ischemic outcome; cortical and caudate infarction (percentage of respective ipsilateral regions) were 37+/-5% and 59+/-5% in CAST and 39+/-7% and 57+/-5% in SHAM, respectively. Estrogen replacement reduced infarction volume in castrated animals in cortex (19+/-4% in CAST+E25 and 12+/-4% in CAST+E100) and in caudate (42+/-6% in CAST+25 and 20+/-7% in CAST + 100). Laser-Doppler flowmetry results during ischemia and reperfusion was not different among groups. CONCLUSIONS Both acute and chronic 17beta-estradiol treatments protect male brain in experimental stroke. Testosterone availability does not alter estradiol-mediated tissue salvage after MCAO.


Stroke | 2000

Neuroprotective Effects of Female Gonadal Steroids in Reproductively Senescent Female Rats

Nabil J. Alkayed; Stephanie J. Murphy; Richard J. Traystman; Patricia D. Hurn

BACKGROUND AND PURPOSE Young adult female rats sustain smaller infarcts after experimental stroke than age-matched males. This sex difference in ischemic brain injury in young animals disappears after surgical ovariectomy and can be restored by estrogen replacement. We sought to determine whether ischemic brain injury continues to be smaller in middle-aged, reproductively senescent female rats compared with age-matched males and to test the effect of ovarian steroids on brain injury after experimental stroke in females. METHODS Four groups of 16-month old Wistar rats (males [n=9], untreated females [n=9], and females pretreated with 17beta-estradiol [25-microgram pellets administered subcutaneously for 7 days; n=9] or progesterone [10-mg pellets administered subcutaneously for 7 days; n=9] were subjected to 2 hours of middle cerebral artery occlusion with the intraluminal filament technique, followed by 22 hours of reperfusion. Physiological variables and laser-Doppler cerebral cortical perfusion were monitored throughout ischemia and early reperfusion. In a separate cohort of males (n=3), untreated females (n=3), females pretreated with 17beta-estradiol (n=3), and females pretreated with progesterone (n=3), end-ischemic regional cerebral blood flow was measured by [(14)C]iodoantipyrine autoradiography. RESULTS As predicted, infarct size was not different between middle-aged male and female rats. Cortical infarcts were 21+/-5% and 31+/-6% of ipsilateral cerebral cortex, and striatal infarcts were 44+/-7% and 43+/-5% of ipsilateral striatum in males and females, respectively. Both estrogen and progesterone reduced cortical infarct in reproductively senescent females (5+/-2% and 16+/-4% in estrogen- and progesterone-treated groups, respectively, compared with 31+/-6% in untreated group). Striatal infarct was smaller in the estrogen- but not in the progesterone-treated group. Relative change in laser-Doppler cerebral cortical perfusion from preischemic baseline and absolute end-ischemic regional cerebral blood flow were not affected by hormonal treatments. CONCLUSIONS We conclude that the protection against ischemic brain injury found in young adult female rats disappears after reproductive senescence in middle-aged females and that ovarian hormones alleviate stroke injury in reproductively senescent female rats by a blood flow-independent mechanism. These findings support a role for hormone replacement therapy in stroke injury prevention in postmenopausal women.


Stroke | 1999

17β-Estradiol Reduces Stroke Injury in Estrogen-Deficient Female Animals

Renata Rusá; Nabil J. Alkayed; Barbara J. Crain; Richard J. Traystman; Alane S. Kimes; Edythe D. London; Judy Klaus; Patricia D. Hurn

BACKGROUND AND PURPOSE The importance of postmenopausal estrogen replacement therapy for stroke in females remains controversial. We previously showed that female rats sustain less infarction in reversible middle cerebral artery occlusion (MCAO) than their ovariectomized counterparts and that vascular mechanisms are partly responsible for improved tissue outcomes. Furthermore, exogenous estrogen strongly protects the male brain, even when administered in a single injection before MCAO injection. The present study examined the hypothesis that replacement of 17beta-estradiol to physiological levels improves stroke outcome in ovariectomized, estrogen-deficient female rats, acting through blood flow-mediated mechanisms. METHODS Age-matched, adult female Wistar rats were ovariectomized and treated with 0, 25, or 100 microgram of 17beta-estradiol administered through a subcutaneous implant or with a single Premarin (USP) injection (1 mg/kg) given immediately before ischemia was induced (n=10 per group). Each animal subsequently underwent 2 hours of MCAO by the intraluminal filament technique, followed by 22 hours of reperfusion. Ipsilateral parietal cortex perfusion was monitored by laser-Doppler flowmetry throughout ischemia. Cortical and caudate-putamen infarction volumes were determined by 2,3, 5-triphenyltetrazolium chloride staining and digital image analysis. End-ischemic regional cerebral blood flow was measured in ovariectomized females with 0- or 25-microgram implants (n=4 per group) by (14)C-iodoantipyrine quantitative autoradiography. RESULTS Plasma estradiol levels were 3.0+/-0.6, 20+/-8, and 46+/-10 pg/mL in the 0-, 25-, and 100-microgram groups, respectively. Caudate-putamen infarction (% of ipsilateral caudate-putamen) was reduced by long-term, 25-microgram estrogen treatment (13+/-4% versus 31+/-6% in the 0-microgram group, P<0.05, and 22+/-3% in the 100-microgram group). Similarly, cortical infarction (% of ipsilateral cortex) was reduced only in the 25-microgram group (3+/-2% versus 12+/-3% in the 0-microgram group, P<0.05, and 6+/-3% in the 100-microgram group. End-ischemic striatal or cortical blood flow was not altered by estrogen treatment at the neuroprotective dose. Infarction volume was unchanged by acute treatment before MCAO when estrogen-treated animals were compared with saline vehicle-treated animals. CONCLUSIONS Long-term estradiol replacement within a low physiological range ameliorates ischemic brain injury in previously ovariectomized female rats. The neuroprotective mechanism is flow-independent, not through preservation of residual ischemic regional cerebral blood flow. Furthermore, the therapeutic range is narrow, because the benefit of estrogen in transient vascular occlusion is diminished at larger doses, which yield high, but still physiologically relevant, plasma 17beta-estradiol levels. Lastly, unlike in the male brain, single-injection estrogen exposure does not salvage ischemic tissue in the female brain. Therefore, although exogenous steroid therapy protects both male and female estrogen-deficient brain, the mechanism may not be identical and depends on long-term hormone augmentation in the female.


Nature Medicine | 1999

Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury

Barbara S. Slusher; James J. Vornov; Ajit G. Thomas; Patricia D. Hurn; Izumi Harukuni; Anish Bhardwaj; Richard J. Traystman; Michael B. Robinson; Paul Britton; X.-C. May Lu; Frank C. Tortella; Krystyna M. Wozniak; Marc Yudkoff; Beth M. Potter; Paul F. Jackson

We describe here a new strategy for the treatment of stroke, through the inhibition of NAALADase (N-acetylated-α-linked-acidic dipeptidase), an enzyme responsible for the hydrolysis of the neuropeptide NAAG (N-acetyl-aspartyl-glutamate) to N-acetyl-aspartate and glutamate. We demonstrate that the newly described NAALADase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) robustly protects against ischemic injury in a neuronal culture model of stroke and in rats after transient middle cerebral artery occlusion. Consistent with inhibition of NAALADase, we show that 2-PMPA increases NAAG and attenuates the ischemia-induced rise in glutamate. Both effects could contribute to neuroprotection. These data indicate that NAALADase inhibition may have use in neurological disorders in which excessive excitatory amino acid transmission is pathogenic.


Stroke | 2009

Good laboratory practice: preventing introduction of bias at the bench

Malcolm R. Macleod; Marc Fisher; Emily S. Sena; Ulrich Dirnagl; Philip M.W. Bath; Alistair Buchan; H. Bart van der Worp; Richard J. Traystman; Kazuo Minematsu; Geoffrey A. Donnan; David W. Howells

Background and Purpose— As a research community, we have failed to demonstrate that drugs which show substantial efficacy in animal models of cerebral ischemia can also improve outcome in human stroke. Summary of Review— Accumulating evidence suggests this may be due, at least in part, to problems in the design, conduct and reporting of animal experiments which create a systematic bias resulting in the overstatement of neuroprotective efficacy. Conclusions— Here, we set out a series of measures to reduce bias in the design, conduct and reporting of animal experiments modeling human stroke.

Collaboration


Dive into the Richard J. Traystman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark C. Rogers

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paco S. Herson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Lee J. Martin

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge