Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Williams is active.

Publication


Featured researches published by Richard J. Williams.


Ecology | 2006

CONSUMER–RESOURCE BODY-SIZE RELATIONSHIPS IN NATURAL FOOD WEBS

Ulrich Brose; Tomas Jonsson; Eric L. Berlow; Philip H. Warren; Carolin Banašek-Richter; Louis-Félix Bersier; Julia L. Blanchard; Thomas Brey; Stephen R. Carpenter; Marie-France Cattin Blandenier; Lara Cushing; Hassan Ali Dawah; Tony Dell; Francois Edwards; Sarah Harper-Smith; Ute Jacob; Mark E. Ledger; Neo D. Martinez; Jane Memmott; Katja Mintenbeck; John K. Pinnegar; Björn C. Rall; Thomas S. Rayner; Daniel C. Reuman; Liliane Ruess; Werner Ulrich; Richard J. Williams; Guy Woodward; Joel E. Cohen

It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer-resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator-prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator-prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer-resource interaction strengths may vary systematically across different habitat categories and consumer types.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Simple prediction of interaction strengths in complex food webs

Eric L. Berlow; Jennifer A. Dunne; Neo D. Martinez; Philip B. Stark; Richard J. Williams; Ulrich Brose

Darwins classic image of an “entangled bank” of interdependencies among species has long suggested that it is difficult to predict how the loss of one species affects the abundance of others. We show that for dynamical models of realistically structured ecological networks in which pair-wise consumer-resource interactions allometrically scale to the ¾ power—as suggested by metabolic theory—the effect of losing one species on another can be predicted well by simple functions of variables easily observed in nature. By systematically removing individual species from 600 networks ranging from 10–30 species, we analyzed how the strength of 254,032 possible pair-wise species interactions depended on 90 stochastically varied species, link, and network attributes. We found that the interaction strength between a pair of species is predicted well by simple functions of the two species biomasses and the body mass of the species removed. On average, prediction accuracy increases with network size, suggesting that greater web complexity simplifies predicting interaction strengths. Applied to field data, our model successfully predicts interactions dominated by trophic effects and illuminates the sign and magnitude of important nontrophic interactions.


Ecology Letters | 2012

More than a meal… integrating non‐feeding interactions into food webs

Sonia Kéfi; Eric L. Berlow; Evie A. Wieters; Sergio A. Navarrete; Owen L. Petchey; Spencer A. Wood; Alice Boit; Lucas Joppa; Kevin D. Lafferty; Richard J. Williams; Neo D. Martinez; Bruce A. Menge; Carol A. Blanchette; Alison C. Iles; Ulrich Brose

Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.


Philosophical Transactions of the Royal Society B | 2009

Cascading extinctions and community collapse in model food webs.

Jennifer A. Dunne; Richard J. Williams

Species loss in ecosystems can lead to secondary extinctions as a result of consumer–resource relationships and other species interactions. We compare levels of secondary extinctions in communities generated by four structural food-web models and a fifth null model in response to sequential primary species removals. We focus on various aspects of food-web structural integrity including robustness, community collapse and threshold periods, and how these features relate to assumptions underlying different models, different species loss sequences and simple measures of diversity and complexity. Hierarchical feeding, a fundamental characteristic of food-web structure, appears to impose a cost in terms of robustness and other aspects of structural integrity. However, exponential-type link distributions, also characteristic of more realistic models, generally confer greater structural robustness than the less skewed link distributions of less realistic models. In most cases for the more realistic models, increased robustness and decreased levels of web collapse are associated with increased diversity, measured as species richness S, and increased complexity, measured as connectance C. These and other results, including a surprising sensitivity of more realistic model food webs to loss of species with few links to other species, are compared with prior work based on empirical food-web data.


PLOS Biology | 2008

Compilation and Network Analyses of Cambrian Food Webs

Jennifer A. Dunne; Richard J. Williams; Neo D. Martinez; Rachel Wood; Douglas H. Erwin

A rich body of empirically grounded theory has developed about food webs—the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple “niche model,” which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences.


PLOS Biology | 2013

Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity

Jennifer A. Dunne; Kevin D. Lafferty; Andrew P. Dobson; Ryan F. Hechinger; Armand M. Kuris; Neo D. Martinez; John P. McLaughlin; Kim N. Mouritsen; Robert Poulin; Karsten Reise; Daniel B. Stouffer; David W. Thieltges; Richard J. Williams; Claus Dieter Zander

Parasites primarily affect food web structure through changes to diversity and complexity. However, compared to free-living species, their life-history traits lead to more complex feeding niches and altered motifs.


Philosophical Transactions of the Royal Society B | 2009

Predicting invasion success in complex ecological networks

Tamara N. Romanuk; Yun Zhou; Ulrich Brose; Eric L. Berlow; Richard J. Williams; Neo D. Martinez

A central and perhaps insurmountable challenge of invasion ecology is to predict which combinations of species and habitats most effectively promote and prevent biological invasions. Here, we integrate models of network structure and nonlinear population dynamics to search for potential generalities among trophic factors that may drive invasion success and failure. We simulate invasions where 100 different species attempt to invade 150 different food webs with 15–26 species and a wide range (0.06–0.32) of connectance. These simulations yield 11u200a438 invasion attempts by non-basal species, 47 per cent of which are successful. At the time of introduction, whether or not the invader is a generalist best predicts final invasion success; however, once the invader establishes itself, it is best distinguished from unsuccessful invaders by occupying a lower trophic position and being relatively invulnerable to predation. In general, variables that reflect the interaction between an invading species and its new community, such as generality and trophic position, best predict invasion success; however, for some trophic categories of invaders, fundamental species traits, such as having the centre of the feeding range low on the theoretical niche axis (for non-omnivorous and omnivorous herbivores), or the topology of the food web (for tertiary carnivores), best predict invasion success. Across all invasion scenarios, a discriminant analysis model predicted successful and failed invasions with 76.5 per cent accuracy for properties at the time of introduction or 100 per cent accuracy for properties at the time of establishment. More generally, our results suggest that tackling the challenge of predicting the properties of species and habitats that promote or inhibit invasions from food web perspective may aid ecologists in identifying rules that govern invasions in natural ecosystems.


Journal of Animal Ecology | 2008

Success and its limits among structural models of complex food webs.

Richard J. Williams; Neo D. Martinez

1. Following the development of the relatively successful niche model, several other simple structural food web models have been proposed. These models predict the detailed structure of complex food webs given only two input parameters, the numbers of species and the number of feeding links among them. 2. The models claim different degrees of success but have not been compared consistently with each other or with the empirical data. We compared the performance of five structural models rigorously against 10 empirical food webs from a variety of aquatic and terrestrial habitats containing 25-92 species and 68-997 links. 3. All models include near-hierarchical ordering of species consumption and have identical distributions of the number of prey of each consumer species, but differ in the extent to which species diets are required to be contiguous and the rules used to assign feeding links. 4. The models perform similarly on a range of food-web properties, including the fraction of top, intermediate and basal species, the standard deviations of generality and connectivity and the fraction of herbivores and omnivores. 5. For other properties, including the standard deviation of vulnerability, the fraction of cannibals and species in loops, mean trophic level, path length, clustering coefficient, maximum similarity and diet discontinuity, there are significant differences in the performance of the different models. 6. While the empirical data do not support the niche models assumption of diet contiguity, models which relax this assumption all have worse overall performance than the niche model. All the models under-estimate severely the fraction of species that are herbivores and exhibit other important failures that need to be addressed in future research.


PLOS ONE | 2010

The Probabilistic Niche Model Reveals the Niche Structure and Role of Body Size in a Complex Food Web

Richard J. Williams; Ananthi Anandanadesan; Drew W. Purves

The niche model has been widely used to model the structure of complex food webs, and yet the ecological meaning of the single niche dimension has not been explored. In the niche model, each species has three traits, niche position, diet position and feeding range. Here, a new probabilistic niche model, which allows the maximum likelihood set of trait values to be estimated for each species, is applied to the food web of the Benguela fishery. We also developed the allometric niche model, in which body size is used as the niche dimension. About 80% of the links in the empirical data are predicted by the probabilistic niche model, a significant improvement over recent models. As in the niche model, species are uniformly distributed on the niche axis. Feeding ranges are exponentially distributed, but diet positions are not uniformly distributed below the predator. Species traits are strongly correlated with body size, but the allometric niche model performs significantly worse than the probabilistic niche model. The best-fit parameter set provides a significantly better model of the structure of the Benguela food web than was previously available. The methodology allows the identification of a number of taxa that stand out as outliers either in the models poor performance at predicting their predators or prey or in their parameter values. While important, body size alone does not explain the structure of the one-dimensional niche.


Ecology Letters | 2012

Mechanistic theory and modelling of complex food-web dynamics in Lake Constance.

Alice Boit; Neo D. Martinez; Richard J. Williams; Ursula Gaedke

Mechanistic understanding of consumer-resource dynamics is critical to predicting the effects of global change on ecosystem structure, function and services. Such understanding is severely limited by mechanistic models inability to reproduce the dynamics of multiple populations interacting in the field. We surpass this limitation here by extending general consumer-resource network theory to the complex dynamics of a specific ecosystem comprised by the seasonal biomass and production patterns in a pelagic food web of a large, well-studied lake. We parameterised our allometric trophic network model of 24 guilds and 107 feeding relationships using the lakes food web structure, initial spring biomasses and body-masses. Adding activity respiration, the detrital loop, minimal abiotic forcing, prey resistance and several empirically observed rates substantially increased the models fit to the observed seasonal dynamics and the size-abundance distribution. This process illuminates a promising approach towards improving food-web theory and dynamic models of specific habitats.

Collaboration


Dive into the Richard J. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Brose

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Eric L. Berlow

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Boit

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos J. Melián

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge