Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard K. Bruick is active.

Publication


Featured researches published by Richard K. Bruick.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver.

Hiromi Yamashita; Makoto Takenoshita; Masaharu Sakurai; Richard K. Bruick; William J. Henzel; Wendy Shillinglaw; David Arnot; Kosaku Uyeda

Carbohydrates mediate their conversion to triglycerides in the liver by promoting both rapid posttranslational activation of rate-limiting glycolytic and lipogenic enzymes and transcriptional induction of the genes encoding many of these same enzymes. The mechanism by which elevated carbohydrate levels affect transcription of these genes remains unknown. Here we report the purification and identification of a transcription factor that recognizes the carbohydrate response element (ChRE) within the promoter of the L-type pyruvate kinase (LPK) gene. The DNA-binding activity of this ChRE-binding protein (ChREBP) in rat livers is specifically induced by a high carbohydrate diet. ChREBPs DNA-binding specificity in vitro precisely correlates with promoter activity in vivo. Furthermore, forced ChREBP overexpression in primary hepatocytes activates transcription from the L-type Pyruvate kinase promoter in response to high glucose levels. The DNA-binding activity of ChREBP can be modulated in vitro by means of changes in its phosphorylation state, suggesting a possible mode of glucose-responsive regulation. ChREBP is likely critical for the optimal long-term storage of excess carbohydrates as fats, and may contribute to the imbalance between nutrient utilization and storage characteristic of obesity.


Critical Reviews in Biochemistry and Molecular Biology | 2010

Prolyl-4-hydroxylases

Steven L. McKnight; Richard K. Bruick

Posttranslational modifications can cause profound changes in protein function. Typically, these modifications are reversible, and thus provide a biochemical on-off switch. In contrast, proline residues are the substrates for an irreversible reaction that is the most common posttranslational modification in humans. This reaction, which is catalyzed by prolyl 4-hydroxylase (P4H), yields (2S,4R)-4-hydroxyproline (Hyp). The protein substrates for P4Hs are diverse. Likewise, the biological consequences of prolyl hydroxylation vary widely, and include altering protein conformation and protein–protein interactions, and enabling further modification. The best known role for Hyp is in stabilizing the collagen triple helix. Hyp is also found in proteins with collagen-like domains, as well as elastin, conotoxins, and argonaute 2. A prolyl hydroxylase domain protein acts on the hypoxia inducible factor α, which plays a key role in sensing molecular oxygen, and could act on inhibitory κB kinase and RNA polymerase II. P4Hs are not unique to animals, being found in plants and microbes as well. Here, we review the enzymic catalysts of prolyl hydroxylation, along with the chemical and biochemical consequences of this subtle but abundant posttranslational modification.


Science | 2009

An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.

Ameen A. Salahudeen; Joel W. Thompson; Julio C. Ruiz; He Wen Ma; Lisa N. Kinch; Qiming Li; Nick V. Grishin; Richard K. Bruick

Iron Sensor Intracellular iron is an essential cofactor for many proteins, but can also damage macromolecules, so its levels are carefully controlled. Cellular iron homeostasis is mediated by iron regulatory proteins that regulate the expression of genes involved in iron uptake and storage. However, it is not clear how cells sense iron bioavailability (see the Perspective by Rouault). Using different approaches, Salahudeen et al. (p. 722, published online 17 September) and Vashisht et al. (p. 718, published online 17 September) have identified the F-box protein FBXL5 as a human iron sensor. FBXL5 is part of an E3 ubiquitin ligase complex that regulates the degradation of iron regulatory proteins and thereby cellular iron levels. It contains a hemerythrin domain that binds iron and acts as an iron-dependent regulatory switch, causing the degradation of FBXL5 under low iron conditions. This alternative pathway for the regulation of iron homeostasis has implications for both normal cellular physiology and disease. A vertebrate hemerythrin domain in an E3 ubiquitin ligase complex senses and regulates cellular iron levels. Cellular iron homeostasis is maintained by the coordinate posttranscriptional regulation of genes responsible for iron uptake, release, use, and storage through the actions of the iron regulatory proteins IRP1 and IRP2. However, the manner in which iron levels are sensed to affect IRP2 activity is poorly understood. We found that an E3 ubiquitin ligase complex containing the FBXL5 protein targets IRP2 for proteasomal degradation. The stability of FBXL5 itself was regulated, accumulating under iron- and oxygen-replete conditions and degraded upon iron depletion. FBXL5 contains an iron- and oxygen-binding hemerythrin domain that acted as a ligand-dependent regulatory switch mediating FBXL5’s differential stability. These observations suggest a mechanistic link between iron sensing via the FBXL5 hemerythrin domain, IRP2 regulation, and cellular responses to maintain mammalian iron homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Structural basis for PAS domain heterodimerization in the basic helix–loop–helix-PAS transcription factor hypoxia-inducible factor

Paul J. A. Erbel; Paul B. Card; Ozgur Karakuzu; Richard K. Bruick; Kevin H. Gardner

Biological responses to oxygen availability play important roles in development, physiological homeostasis, and many disease processes. In mammalian cells, this adaptation is mediated in part by a conserved pathway centered on the hypoxia-inducible factor (HIF). HIF is a heterodimeric protein complex composed of two members of the basic helix–loop–helix Per-ARNT-Sim (PAS) (ARNT, aryl hydrocarbon receptor nuclear translocator) domain family of transcriptional activators, HIFα and ARNT. Although this complex involves protein–protein interactions mediated by basic helix–loop–helix and PAS domains in both proteins, the role played by the PAS domains is poorly understood. To address this issue, we have studied the structure and interactions of the C-terminal PAS domain of human HIF-2α by NMR spectroscopy. We demonstrate that HIF-2α PAS-B binds the analogous ARNT domain in vitro, showing that residues involved in this interaction are located on the solvent-exposed side of the HIF-2α central β-sheet. Mutating residues at this surface not only disrupts the interaction between isolated PAS domains in vitro but also interferes with the ability of full-length HIF to respond to hypoxia in living cells. Extending our findings to other PAS domains, we find that this β-sheet interface is widely used for both intra- and intermolecular interactions, suggesting a basis of specificity and regulation of many types of PAS-containing signaling proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Structure of Factor-Inhibiting Hypoxia-Inducible Factor 1: An Asparaginyl Hydroxylase Involved in the Hypoxic Response Pathway

Charles E. Dann; Richard K. Bruick; Johann Deisenhofer

Precise regulation of the evolutionarily conserved hypoxia-inducible transcription factor (HIF) ensures proper adaptation to variations in oxygen availability throughout development and into adulthood. Oxygen-dependent regulation of HIF stability and activity are mediated by hydroxylation of conserved proline and asparagine residues, respectively. Because the relevant prolyl and asparginyl hydroxylases use O2 to effect these posttranslational modifications, these enzymes are implicated as direct oxygen sensors in the mammalian hypoxic response pathway. Here we present the structure of factor-inhibiting HIF-1 (FIH-1), the pertinent asparaginyl hydroxylase involved in hypoxic signaling. Hydroxylation of the C-terminal transactivation domain (CTAD) of HIF by FIH-1 prevents CTAD association with transcriptional coactivators under normoxic conditions. Consistent with other structurally known hydroxylases, FIH-1 is comprised of a β-strand jellyroll core with both Fe(II) and the cosubstrate 2-oxoglutarate bound in the active site. Details of the molecular contacts at the active site of FIH-1 have been elucidated and provide a platform for future drug design. Furthermore, the structure reveals the presence of a FIH-1 homodimer that forms in solution and is essential for FIH activity.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor

Thomas H. Scheuermann; Diana R. Tomchick; Mischa Machius; Yan Guo; Richard K. Bruick; Kevin H. Gardner

The hypoxia-inducible factor (HIF) basic helix–loop–helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2α and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2α PAS-B domain contains a large internal cavity that accommodates ligands identified from a small-molecule screen. Binding one of these ligands to HIF2α PAS-B modulates the affinity of the HIF2α:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.


Nature Chemical Biology | 2013

Allosteric inhibition of hypoxia inducible factor-2 with small molecules

Thomas H. Scheuermann; Qiming Li; He-Wen Ma; Jason Key; Lei Zhang; Rui-rui Chen; Joseph A. Garcia; Jacinth Naidoo; Jamie Longgood; Doug E. Frantz; Uttam K. Tambar; Kevin H. Gardner; Richard K. Bruick

Hypoxia Inducible Factors (HIFs) are heterodimeric transcription factors induced in many cancers where they frequently promote the expression of many protumorigenic pathways. Though transcription factors are typically considered “undruggable”, the PAS-B domain of the HIF-2α subunit contains a large cavity within its hydrophobic core that offers a unique foothold for small-molecule regulation. Here we identify artificial ligands that bind within this pocket and characterize the resulting structural and functional changes caused by binding. Notably, these ligands antagonize HIF-2 heterodimerization and DNA-binding activity in vitro and in cultured cells, reducing HIF-2 target gene expression. Despite the high identity between HIF-2α and HIF-1α, these ligands are highly selective and do not affect HIF-1 function. These chemical tools establish the molecular basis for selective regulation of HIF-2, providing potential therapeutic opportunities to intervene in HIF-2-driven tumors such as renal cell carcinomas.


Nature | 2016

Targeting renal cell carcinoma with a HIF-2 antagonist

Wenfang Chen; Haley Hill; Alana Christie; Min-Soo Kim; Eboni Holloman; Andrea Pavia-Jimenez; Farrah Homayoun; Yuanqing Ma; Nirav Patel; Paul Yell; Guiyang Hao; Qurratulain Yousuf; Allison Joyce; Ivan Pedrosa; Heather Geiger; He Zhang; Jenny Chang; Kevin H. Gardner; Richard K. Bruick; Catherine Reeves; Tae Hyun Hwang; Kevin D. Courtney; Eugene P. Frenkel; Xiankai Sun; Naseem Zojwalla; Tai Wong; James P. Rizzi; Eli M. Wallace; John A. Josey; Yang Xie

Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α–HIF-1β) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1β, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.


Nature Communications | 2013

A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth

Lei Wang; Jianjun Chang; Diana Varghese; Michael T. Dellinger; Subodh Kumar; Anne M. Best; Julio C. Ruiz; Richard K. Bruick; Samuel Peña-Llopis; Junjie Xu; David J. Babinski; Doug E. Frantz; Rolf A. Brekken; Amy Quinn; Anton Simeonov; Johnny Easmon; Elisabeth D. Martinez

The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signaling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) which specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumors in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumor burden and prolongs survival. Importantly, we find that patients with breast tumors that overexpress Jumonji demethylases have significantly lower survival. Thus JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance.


Trends in Plant Science | 1999

Light-activated translation of chloroplast mRNAs

Richard K. Bruick; Stephen P. Mayfield

The integrated regulation of mRNA stability, processing and translation facilitates the expression of several chloroplast genes, particularly in response to changes in illumination. Nuclear and chloroplast-encoded factors that mediate the expression of specific chloroplast messages have been characterized from green algae and plants. Recent studies suggest that the chloroplast might have recruited eukaryotic proteins, which are usually found in the cytoplasm or the endoplasmic reticulum, to couple the level of photosynthetic activity to gene expression via translational activation. Consequently, elements required for translational initiation of chloroplast messages differ from their prokaryotic ancestors. These results suggest that chloroplast translational regulation is a hybrid between prokaryotic and eukaryotic systems.

Collaboration


Dive into the Richard K. Bruick's collaboration.

Top Co-Authors

Avatar

Kevin H. Gardner

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Julio C. Ruiz

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thomas H. Scheuermann

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Uttam K. Tambar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Doug E. Frantz

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

Steven L. McKnight

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Joel W. Thompson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Card

University of Texas System

View shared research outputs
Researchain Logo
Decentralizing Knowledge