Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard K.P. Benninger is active.

Publication


Featured researches published by Richard K.P. Benninger.


Journal of Immunology | 2006

Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria

Björn Önfelt; Shlomo Nedvetzki; Richard K.P. Benninger; Marco A. Purbhoo; Stefanie Sowinski; Alistair N. Hume; Miguel C. Seabra; Mark A. A. Neil; Paul M. W. French; Daniel M. Davis

We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > ∼0.7 μm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at ∼1 μm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.


Biochemical Journal | 2009

Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion.

Lynley D. Pound; Suparna A. Sarkar; Richard K.P. Benninger; Yingda Wang; Adisak Suwanichkul; Richard L. Printz; James K. Oeser; Catherine E. Lee; David W. Piston; Owen P. McGuinness; John C. Hutton; David R. Powell; Richard M. O'Brien

The Slc30a8 gene encodes the islet-specific zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Polymorphic variants in amino acid residue 325 of human ZnT-8 are associated with altered susceptibility to Type 2 diabetes and ZnT-8 autoantibody epitope specificity changes in Type 1 diabetes. To assess the physiological importance of ZnT-8, mice carrying a Slc30a8 exon 3 deletion were analysed histologically and phenotyped for energy metabolism and pancreatic hormone secretion. No gross anatomical or behavioural changes or differences in body weight were observed between wild-type and ZnT-8-/- mice, and ZnT-8-/- mouse islets were indistinguishable from wild-type in terms of their numbers, size and cellular composition. However, total zinc content was markedly reduced in ZnT-8-/- mouse islets, as evaluated both by Timms histochemical staining of pancreatic sections and direct measurements in isolated islets. Blood glucose levels were unchanged in 16-week-old, 6 h fasted animals of either gender; however, plasma insulin concentrations were reduced in both female (approximately 31%) and male (approximately 47%) ZnT-8-/- mice. Intraperitoneal glucose tolerance tests demonstrated no impairment in glucose clearance in male ZnT-8-/- mice, but glucose-stimulated insulin secretion from isolated islets was reduced approximately 33% relative to wild-type littermates. In summary, Slc30a8 gene deletion is accompanied by a modest impairment in insulin secretion without major alterations in glucose metabolism.


Biophysical Journal | 2008

Gap junction coupling and calcium waves in the pancreatic islet.

Richard K.P. Benninger; Min Zhang; W. Steven Head; Leslie S. Satin; David W. Piston

The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of beta-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.


Diabetes | 2012

Connexin-36 Gap Junctions Regulate In Vivo First- and Second-Phase Insulin Secretion Dynamics and Glucose Tolerance in the Conscious Mouse

W. Steven Head; Meredith L. Orseth; Craig S. Nunemaker; Leslie S. Satin; David W. Piston; Richard K.P. Benninger

Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36−/−) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36−/− and control mice. Our results show that Cx36−/− mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36−/− mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36−/− islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.


Biophysical Journal | 2008

Optical Lock-In Detection of FRET Using Synthetic and Genetically Encoded Optical Switches

Shu Mao; Richard K.P. Benninger; Yuling Yan; Chutima Petchprayoon; David H. K. Jackson; Christopher J. Easley; David W. Piston; Gerard Marriott

The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins.


The Journal of Physiology | 2011

Gap junctions and other mechanisms of cell–cell communication regulate basal insulin secretion in the pancreatic islet

Richard K.P. Benninger; W. Steven Head; Min Zhang; Leslie S. Satin; David W. Piston

Non‐Technical Summary  The islet of Langerhans secretes the hormone insulin in response to elevated glucose. Interactions between cells within the islet is important for the regulation of insulin secretion, to both suppress basal insulin secretion and enhance the glucose‐stimulated response. We show that multiple mechanisms of cell–cell communication are required for the suppression of basal insulin release. First, gap junctions suppress spontaneous calcium signals which suppresses triggering of insulin release. Second, other juxtacrine mechanisms, regulated by cAMP and glucose, suppress more distal steps in the regulation of insulin granule exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still fully suppress basal insulin release. This new insight into the function of islet of Langerhans is important for understanding the development and treatment of diabetes.


Optics Express | 2007

Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging

Sunil Kumar; Christopher Dunsby; P. A. A. De Beule; Dylan M. Owen; Uma Anand; Peter M. P. Lanigan; Richard K.P. Benninger; Daniel M. Davis; Mark A. A. Neil; Praveen Anand; Christopher D. Benham; A. Naylor; Paul M. W. French

The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and enables fascinating applications such as 3-D fluorescence imaging. Here we report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleachingand movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor.We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor.


Trends in Endocrinology and Metabolism | 2014

Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics

Richard K.P. Benninger; David W. Piston

Coordinated pulses of electrical activity and insulin secretion are a hallmark of the islet of Langerhans. These coordinated behaviors are lost when β cells are dissociated, which also leads to increased insulin secretion at low glucose levels. Islets without gap junctions exhibit asynchronous electrical activity similar to dispersed cells, but their secretion at low glucose levels is still clamped off, putatively by a juxtacrine mechanism. Mice lacking β cell gap junctions have near-normal average insulin levels, but are glucose intolerant due to reduced first-phase and pulsatile insulin secretion, illustrating the importance of temporal dynamics. Here, we review the quantitative data on islet synchronization and the current mathematical models that have been developed to explain these behaviors and generate greater understanding of the underlying mechanisms.


Current protocols in pharmacology | 2003

Two-photon excitation microscopy for the study of living cells and tissues.

Richard K.P. Benninger; David W. Piston

Two‐photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three‐dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two‐photon excitation and discuss the advantages and limitations of its use in laser‐scanning microscopy. The principal advantages of two‐photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two‐photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two‐photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application. Curr. Protoc. Cell Biol. 59:4.11.1‐4.11.24.


Reviews of Physiology Biochemistry and Pharmacology | 2008

Multi-photon excitation imaging of dynamic processes in living cells and tissues.

Richard K.P. Benninger; M. Hao; David W. Piston

Over the past decade, two-photon microscopy has successfully made the transition from the laser laboratory into a true biological research setting. This has been due in part to the recent development of turnkey ultrafast laser systems required for two-photon microscopy, allowing ease of use in nonspecialist laboratories. The advantages of two-photon microscopy over conventional optical sectioning techniques are for greater imaging depths and reduced overall phototoxicity, as such enabling noninvasive intra-vital imaging of cellular and subcellular processes. Greater understanding of these advantages has allowed this technique to be more effectively utilized in a biological research setting. This review will cover the recent widespread uses of two-photon microscopy and highlight the wide range of physiological studies enabled in fields such as neurosciences, developmental biology, immunology, cancer biology, and endocrinology.

Collaboration


Dive into the Richard K.P. Benninger's collaboration.

Top Co-Authors

Avatar

David W. Piston

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew J. Westacott

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ian Munro

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Marina Pozzoli

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge