Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard K. Plemper is active.

Publication


Featured researches published by Richard K. Plemper.


Journal of Virology | 2002

Strength of Envelope Protein Interaction Modulates Cytopathicity of Measles Virus

Richard K. Plemper; Anthea Hammond; Denis Gerlier; Adele K. Fielding; Roberto Cattaneo

ABSTRACT To understand the molecular determinants of measles virus (MV) cytopathicity, we have characterized mutant viruses exhibiting a more-extensive cell-to-cell fusion while maintaining efficient replication to high titers. A virus which is modified by the addition of an 8-amino-acid Flag epitope tag at the cytoplasmic tail of its H (for MV hemagglutinin) envelope glycoprotein replicates efficiently, has an increased cytopathicity, possesses a greater infectivity per particle, and has an altered protein composition compared with that of unmodified MV. The mutant phenotype is not specifically linked to the epitope sequence, since an alternatively added HA (for influenza virus-derived hemagglutinin) epitope tag caused similar effects. We demonstrate that both epitope tags weaken the interaction between the H and fusion (F) glycoproteins in virus-infected cells. This reduction in strength of H/F interaction is independent of the presence of the viral matrix (M) protein. Viruses with this less stable complex are more sensitive to neutralization by a soluble octameric form of the CD46 receptor, consistent with their increased fusogenicity. Similar analyses of glycoproteins derived from MV strains with reduced cytopathicities confirm that the strength of H and F glycoprotein interaction is a modulator of viral fusogenicity.


Journal of Biological Chemistry | 2008

Functional Interaction between Paramyxovirus Fusion and Attachment Proteins

Jin K. Lee; Andrew Prussia; Tanja Paal; Laura K. White; James P. Snyder; Richard K. Plemper

Paramyxovirinae envelope glycoproteins constitute a premier model to dissect how specific and dynamic interactions in multisubunit membrane protein complexes can control deep-seated conformational rearrangements. However, individual residues that determine reciprocal specificity of the viral attachment and fusion (F) proteins have not been identified. We have developed an assay based on a pair of canine distemper virus (CDV) F proteins (strains Onderstepoort (ODP) and Lederle) that share ∼95% identity but differ in their ability to form functional complexes with the measles virus (MV) attachment protein (H). Characterization of CDV F chimeras and mutagenesis reveals four residues in CDV F-ODP (positions 164, 219, 233, and 317) required for productive interaction with MV H. Mutating these residues to the Lederle type disrupts triggering of F-ODP by MV H without affecting functionality when co-expressed with CDV H. Co-immunoprecipitation shows a stronger physical interaction of F-ODP than F-Lederle with MV H. Mutagenesis of MV F highlights the MV residues homologous to CDV F residues 233 and 317 as determinants for physical glycoprotein interaction and fusion activity under homotypic conditions. In assay reversal, the introduction of sections of the CDV H stalk into MV H shows a five-residue fragment (residues 110–114) to mediate specificity for CDV F-Lederle. All of the MV H stalk chimeras are surface-expressed, show hemadsorption activity, and trigger MV F. Combining the five-residue H chimera with the CDV F-ODP quadruple mutant partially restores activity, indicating that the residues identified in either glycoprotein contribute interdependently to the formation of functional complexes. Their localization in structural models of F and H suggests that placement in particular of F residue 233 in close proximity to the 110–114 region of H is structurally conceivable.


Journal of Virology | 2009

Probing the Spatial Organization of Measles Virus Fusion Complexes

Tanja Paal; Melinda A. Brindley; Courtney St. Clair; Andrew Prussia; Dominika Gaus; Stefanie A. Krumm; James P. Snyder; Richard K. Plemper

ABSTRACT The spatial organization of metastable paramyxovirus fusion (F) and attachment glycoprotein hetero-oligomers is largely unknown. To further elucidate the organization of functional fusion complexes of measles virus (MeV), an archetype of the paramyxovirus family, we subjected central predictions of alternative docking models to experimental testing using three distinct approaches. Carbohydrate shielding through engineered N-glycans indicates close proximity of a membrane-distal, but not membrane-proximal, section of the MeV attachment (H) protein stalk domain to F. Directed mutagenesis of this section identified residues 111, 114, and 118 as modulators of avidity of glycoprotein interactions and determinants of F triggering. Stalk-length variation through deletion or insertion of HR elements at positions flanking this section demonstrates that the location of the stalk segment containing these residues cannot be altered in functional fusion complexes. In contrast, increasing the distance between the H head domains harboring the receptor binding sites and this section through insertion of structurally rigid α-helical domains with a pitch of up to approximately 75 Å downstream of stalk position 118 partially maintains functionality in transient expression assays and supports efficient growth of recombinant virions. In aggregate, these findings argue against specific protein-protein contacts between the H head and F head domains but instead support a docking model that is characterized by short-range contacts between the prefusion F head and the attachment protein stalk, possibly involving H residues 111, 114, and 118, and extension of the head domain of the attachment protein above prefusion F.


Virology | 2012

A stabilized respiratory syncytial virus reverse genetics system amenable to recombination-mediated mutagenesis

Anne L. Hotard; Fyza Y. Shaikh; Sujin Lee; Dan Yan; Michael N. Teng; Richard K. Plemper; James E. Crowe; Martin L. Moore

We describe the first example of combining bacterial artificial chromosome (BAC) recombination-mediated mutagenesis with reverse genetics for a negative strand RNA virus. A BAC-based respiratory syncytial virus (RSV) rescue system was established. An important advantage of this system is that RSV antigenomic cDNA was stabilized in the BAC vector. The RSV genotype chosen was A2-line19F, a chimeric strain previously shown to recapitulate in mice key features of RSV pathogenesis. We recovered two RSV reporter viruses, one expressing the red fluorescent protein monomeric Katushka 2 (A2-K-line19F) and one expressing Renilla luciferase (A2-RL-line19F). As proof of principle, we efficiently generated a RSV gene deletion mutant (A2-line19FΔNS1/NS2) and a point mutant (A2-K-line19F-I557V) by recombination-mediated BAC mutagenesis. Together with sequence-optimized helper expression plasmids, BAC-RSV is a stable, versatile, and efficient reverse genetics platform for generation of a recombinant Pneumovirus.


PLOS Pathogens | 2011

Structural and Mechanistic Studies of Measles Virus Illuminate Paramyxovirus Entry

Richard K. Plemper; Melinda A. Brindley; Ronald M. Iorio

Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.


Current Opinion in Virology | 2011

Cell entry of enveloped viruses.

Richard K. Plemper

Infection of cells by enveloped viruses requires merger of the viral envelope membrane with target cell membranes, resulting in the formation of fusion pores through which the viral genome is released. Since lipid membranes do not mix spontaneously, the fusion process is energy-dependent and mediated by viral envelope glycoprotein complexes. Based on their structural and mechanistic properties, three distinct classes of viral fusion proteins have been identified to date. Despite their diversity, basic principles of viral membrane fusion, simultaneous engagement of both donor and target membrane and refolding into hairpin-like structures, have emerged as universally conserved. This article provides an overview of the basic principles of viral membrane fusion common to all enveloped viruses and discusses the specific structural and functional features of the different fusion protein classes by example of the paramyxovirus, flavivirus and rhabdovirus families.


Journal of Biological Chemistry | 2012

Structural Rearrangements of the Central Region of the Morbillivirus Attachment Protein Stalk Domain Trigger F Protein Refolding for Membrane Fusion

Nadine Ader; Melinda A. Brindley; Mislay Avila; Francesco C. Origgi; Johannes P. M. Langedijk; Claes Örvell; Marc Vandevelde; Andreas Zurbriggen; Richard K. Plemper; Philippe Plattet

Background: Attachment (H) and fusion glycoproteins of morbilliviruses co-operate to induce membrane fusion for cell entry. Results: Reversible membrane fusion inhibition by engineered disulfide bonds within the central region of the tetrameric H-stalk domain. Conclusion: Structural rearrangements of the H-stalk domain contribute to fusion triggering. Significance: Provides a basis for novel strategies targeting the central region of the attachment protein-stalk domain to prevent Morbillivirus cell entry. It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91–115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111–118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.


Journal of Virology | 2010

Blue Native PAGE and Biomolecular Complementation Reveal a Tetrameric or Higher-Order Oligomer Organization of the Physiological Measles Virus Attachment Protein H

Melinda A. Brindley; Richard K. Plemper

ABSTRACT Members of the Paramyxovirinae subfamily rely on the concerted action of two envelope glycoprotein complexes, attachment protein H and the fusion (F) protein oligomer, to achieve membrane fusion for viral entry. Despite advances in X-ray information, the organization of the physiological attachment (H) oligomer in functional fusion complexes and the molecular mechanism linking H receptor binding with F triggering remain unknown. Here, we have applied an integrated approach based on biochemical and functional assays to the problem. Blue native PAGE analysis indicates that native H complexes extract predominantly in the form of loosely assembled tetramers from purified measles virus (MeV) particles and cells transiently expressing the viral envelope glycoproteins. To gain functional insight, we have established a bimolecular complementation (BiC) assay for MeV H, on the basis of the hypothesis that physical interaction of H with F complexes, F triggering, and receptor binding constitute distinct events. Having experimentally confirmed three distinct H complementation groups, implementation of H BiC (H-BiC) reveals that a high-affinity receptor-to-paramyxovirus H monomer stoichiometry below parity is sufficient for fusion initiation, that F binding and fusion initiation are separable in H oligomers, and that a higher relative amount of F binding-competent than F fusion initiation- or receptor binding-competent H monomers per oligomer is required for optimal fusion. By capitalizing on these findings, H-BiC activity profiles confirm the organization of H into tetramers or higher-order multimers in functional fusion complexes. Results are interpreted in light of a model in which receptor binding may affect the oligomeric organization of the attachment protein complex.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Triggering the measles virus membrane fusion machinery

Melinda A. Brindley; Makoto Takeda; Philippe Plattet; Richard K. Plemper

Paramyxoviruses contain glycoprotein fusion machineries that mediate membrane merger for infection. The molecular framework and mechanistic principles governing receptor-induced triggering of the machinery remain unknown. Using measles virus (MeV) fusion complexes, we demonstrate that receptor binding to only one dimer of the tetrameric attachment protein (H) dimer-of-dimers induces fusion-protein (F) triggering; receptor binding and F triggering can be communicated across the dimer–dimer interface of H; and the physical integrity of the tetramer is maintained during fusion. The central MeV H ectodomain stalk region requires structural flexibility for activation of F, and alanine substitutions in this section, physical stress, or exposure of H to soluble ligands trigger conformational rearrangements in native H tetramers. Binding of soluble receptor to H is sufficient to initiate refolding of F, underscoring the physiological significance of this rearrangement of the H tetramer. These data outline a model of the triggering of the physiological MeV fusion machinery in which unilateral receptor binding to one dimer pair in the H tetramer is sufficient to induce a reorganization of H that affects the conformation of the central stalk section, severing interactions between H and the F trimer and activating refolding of F.


Journal of Virology | 2013

A Stabilized Headless Measles Virus Attachment Protein Stalk Efficiently Triggers Membrane Fusion

Melinda A. Brindley; Rolf Suter; Isabel Schestak; Gabriella Kiss; Elizabeth R. Wright; Richard K. Plemper

ABSTRACT Paramyxovirus attachment and fusion (F) envelope glycoprotein complexes mediate membrane fusion required for viral entry. The measles virus (MeV) attachment (H) protein stalk domain is thought to directly engage F for fusion promotion. However, past attempts to generate truncated, fusion-triggering-competent H-stem constructs remained fruitless. In this study, we addressed the problem by testing the hypothesis that truncated MeV H stalks may require stabilizing oligomerization tags to maintain intracellular transport competence and F-triggering activity. We engineered H-stems of different lengths with added 4-helix bundle tetramerization domains and demonstrate restored cell surface expression, efficient interaction with F, and fusion promotion activity of these constructs. The stability of the 4-helix bundle tags and the relative orientations of the helical wheels of H-stems and oligomerization tags govern the kinetics of fusion promotion, revealing a balance between H stalk conformational stability and F-triggering activity. Recombinant MeV particles expressing a bioactive H-stem construct in the place of full-length H are viable, albeit severely growth impaired. Overall, we demonstrate that the MeV H stalk represents the effector domain for MeV F triggering. Fusion promotion appears linked to the conformational flexibility of the stalk, which must be tightly regulated in viral particles to ensure efficient virus entry. While the pathways toward assembly of functional fusion complexes may differ among diverse members of the paramyxovirus family, central elements of the triggering machinery emerge as highly conserved.

Collaboration


Dive into the Richard K. Plemper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Yan

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Cox

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge