Richard K. Shoemaker
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard K. Shoemaker.
Applied and Environmental Microbiology | 2001
Jacob M. Hornby; Ellen C. Jensen; Amber D. Lisec; Joseph J. Tasto; Brandon Jahnke; Richard K. Shoemaker; Patrick H. Dussault; Kenneth W. Nickerson
ABSTRACT The inoculum size effect in the dimorphic fungus Candida albicans results from production of an extracellular quorum-sensing molecule (QSM). This molecule prevents mycelial development in both a growth morphology assay and a differentiation assay using three chemically distinct triggers for germ tube formation (GTF): l-proline, N-acetylglucosamine, and serum (either pig or fetal bovine). In all cases, the presence of QSM prevents the yeast-to-mycelium conversion, resulting in actively budding yeasts without influencing cellular growth rates. QSM exhibits general cross-reactivity within C. albicans in that supernatants from strain A72 are active on five other strains ofC. albicans and vice versa. The QSM excreted by C. albicans is farnesol (C15H26O; molecular weight, 222.37). QSM is extracellular, and is produced continuously during growth and over a temperature range from 23 to 43°C, in amounts roughly proportional to the CFU/milliliter. Production is not dependent on the type of carbon source nor nitrogen source or on the chemical nature of the growth medium. Both commercial mixed isomer and (E,E)-farnesol exhibited QSM activity (the ability to prevent GTF) at a level sufficient to account for all the QSM activity present in C. albicans supernatants, i.e., 50% GTF at ca. 30 to 35 μM. Nerolidol was ca. two times less active than farnesol. Neither geraniol (C10), geranylgeraniol (C20), nor farnesyl pyrophosphate had any QSM activity.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Aaron D. Wilson; Richard K. Shoemaker; Alexander Miedaner; James T. Muckerman; Daniel L. DuBois; M. Rakowski DuBois
Studies of the role of proton relays in molecular catalysts for the electrocatalytic production and oxidation of H2 have been carried out. The electrochemical production of hydrogen from protonated DMF solutions catalyzed by [Ni(P2PhN2Ph)2(CH3CN)](BF4)2, 3a (where P2PhN2Ph is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane), permits a limiting value of the H2 production rate to be determined. The turnover frequency of 350 s−1 establishes that the rate of H2 production for the mononuclear nickel catalyst 3a is comparable to those observed for Ni-Fe hydrogenase enzymes. In the electrochemical oxidation of hydrogen catalyzed by [Ni(P2CyN2Bz)2](BF4)2, 3b (where Cy is cyclohexyl and Bz is benzyl), the initial step is the reversible addition of hydrogen to 3b (Keq = 190 atm−1 at 25°C). The hydrogen addition product exists as three nearly isoenergetic isomers 4A–4C, which have been identified by a combination of one- and two-dimensional 1H, 31P, and 15N NMR spectroscopies as Ni(0) complexes with a protonated amine in each cyclic ligand. The nature of the isomers, together with calculations, suggests a mode of hydrogen activation that involves a symmetrical interaction of a nickel dihydrogen ligand with two amine bases in the diphosphine ligands. Single deprotonation of 4 by an external base results in a rearrangement to [HNi(P2CyN2Bz)2](BF4), 5, and this reaction is reversed by the addition of a proton to the nickel hydride complex. The small energy differences associated with significantly different distributions in electron density and protons within these molecules may contribute to their high catalytic activity.
Advanced Materials | 2014
Philip Taynton; Kai Yu; Richard K. Shoemaker; Yinghua Jin; H. Jerry Qi; Wei Zhang
DOI: 10.1002/adma.201400317 as dynamers by Lehn, [ 25,26 ] are stimuli-responsive polymers, most notably exhibiting macroscopic responses to changes in pH. [ 27,28 ] Several imine-containing polymers have been demonstrated, including pH-responsive hydrogels [ 20 ] and a working organic light-emitting diode (OLED). [ 23 ] However, the potential of polyimines as malleable, mechanically resilient polymeric materials, as well as their processability, have remained largely unexplored. We envision that imine-linked polymers can take malleability in covalent network polymers to the next level of simplicity, affordability and practicality. Herein, we present the fi rst catalyst-free malleable polyimine which fundamentally behaves like a classic thermoset at ambient conditions yet can be reprocessed by application of either heat or water. This means that green, room temperature processing conditions are accessible for this important class of functional polymers. A crosslinked polyimine network was prepared from commercially available monomers: terephthaldehyde, diethylene triamine, and triethylene tetramine ( Figure 1 a). A polyimine fi lm was obtained by simply mixing the three above components in a 3:0.9:1.4 stoichiometry in the absence of any catalyst in a mixture of organic solvents (1:1:8, v/v/v, CH 2 Cl 2 /EtOAc/EtOH), then allowing the volatiles to evaporate slowly. Alternatively, the polymer can be obtained as a powder by using ethyl acetate as the only solvent. The polymerization reaction was confi rmed by infrared spectroscopy, which revealed that aldehyde end groups were consumed while imine linkages were formed (Figure S2, Supporting Information). The resulting translucent polymer is hard and glassy at room temperature ( T g is 56 °C) (Figure S1, Supporting Information) and has a modulus of near 1 GPa with stress at break of 40 MPa (Figure S3, Supporting Information). The time and temperature dependent relaxation modulus of the polyimine fi lm was tested to characterize the heat-induced malleability. Figure 1 b depicts the results of a series of relaxation tests over a wide range of temperatures (50–127.5 °C) on a double logarithmic plot. Specifi cally, at 80 °C, the bond exchange reaction is initiated and the normalized relaxation modulus is decreased from 1 to 0.11 within 30 min, indicating an 89% release of the internal stress within the thermoset polymer. By shifting each relaxation curve horizontally with respect to a reference temperature at 80 °C, a master relaxation curve was constructed (Figure 1 c), which indicates the stress relaxation of the polyimine follows the classic time-temperature superposition (TTSP) behavior. The plot of time-temperature shift factors as a function of temperature (Figure 1 d) shows that the polyimine’s stress-relaxation behavior exhibits Arrheniuslike temperature dependence. Using the extrapolation, we calculated that while it takes 30 min for the stress to be relaxed by ca. 90% at 80 °C, the same process would take ca. 480 days at room temperature. The polyimine is thus the fi rst reported Covalent network polymers, which offer robust mechanical properties, generally lack the ability to be recycled. [ 1 ] There has been a great deal of research effort to incorporate reversible crosslinks into network polymers in order to obtain mechanically tough materials with self-healing properties. [ 2–13 ] Many have employed non-covalent crosslinks to achieve this goal. Ionic and hydrogen bonds are readily reversible and have been known to achieve effi cient self-healing performances. [ 14–17 ]
Journal of the American Chemical Society | 2009
Robert L. Kerr; Seth A. Miller; Richard K. Shoemaker; Brian J. Elliott; Douglas L. Gin
A new type of polymer electrolyte material for Li ion transport has been developed. This material is based on a polymerizable lyotropic (i.e., amphiphilic) liquid crystal (1) that forms a type-II bicontinuous cubic (Q(II)) phase with the common liquid electrolyte, propylene carbonate (PC), and its Li salt solutions. The resulting cross-linked, solid-liquid nanocomposite has an ordered, three-dimensional interconnected network of phase-separated liquid PC nanochannels and exhibits a room-temperature ion conductivity of 10(-4) to 10(-3) S cm(-1) when formed with 15 wt % 0.245 M LiClO(4)-PC solution. This value approaches that of conventional gelled poly(ethylene oxide)-based electrolytes blended with larger amounts of higher-concentration Li salt solutions. It is also similar to that of a bulk 0.245 M LiClO(4)-PC solution measured using the same AC impedance methods. Preliminary variable-temperature ion conductivity and NMR DOSY studies showed that liquidlike diffusion is present in the Q(II) nanochannels and that good ion conductivity ( approximately 10(-4) S cm(-1)) and PC mobility are retained down to -35 degrees C (and lower). This type of stable, liquidlike ion conductivity over a broad temperature range is typically not exhibited by conventional gelled-polymer- or liquid-crystal-based electrolytes, making this new material potentially valuable for enabling Li ion batteries that can operate more efficiently over a wider temperature range.
Molecular Systems Biology | 2010
Juhan Kim; Jamie P. Kershner; Yehor Novikov; Richard K. Shoemaker; Shelley D. Copley
Bacterial genomes encode hundreds to thousands of enzymes, most of which are specialized for particular functions. However, most enzymes have inefficient promiscuous activities, as well, that generally serve no purpose. Promiscuous reactions can be patched together to form multistep metabolic pathways. Mutations that increase expression or activity of enzymes in such serendipitous pathways can elevate flux through the pathway to a physiologically significant level. In this study, we describe the discovery of three serendipitous pathways that allow synthesis of pyridoxal‐5′‐phosphate (PLP) in a strain of E. coli that lacks 4‐phosphoerythronate (4PE) dehydrogenase (PdxB) when one of seven different genes is overexpressed. We have characterized one of these pathways in detail. This pathway diverts material from serine biosynthesis and generates an intermediate in the normal PLP synthesis pathway downstream of the block caused by lack of PdxB. Steps in the pathway are catalyzed by a protein of unknown function, a broad‐specificity enzyme whose physiological role is unknown, and a promiscuous activity of an enzyme that normally serves another function. One step in the pathway may be non‐enzymatic.
Journal of the American Chemical Society | 2008
Douglas C. Caskey; Takuya Yamamoto; Chris Addicott; Richard K. Shoemaker; Jaroslav Vacek; Adam M. Hawkridge; David C. Muddiman; Gregg S. Kottas; Josef Michl; Peter J. Stang
The coordination-driven self-assembly of four different trigonal prisms from 3 equiv of one of four different tetrapyridyl star connectors and 6 equiv of a platinum linker dication in nitromethane is presented. This face-directed approach affords high yields without template assistance. The prisms have been characterized by multinuclear and DOSY NMR and dual ESI-FT-ICR mass spectrometry. The use of a conformationally chiral star connector leads to a conformationally chiral prism when connector arm ends attached to a vertex have a strongly correlated twist sense and chirality is communicated across polyhedral faces, edges, and vertices. Molecular mechanics results suggest that in the smallest prism 3d collective effects dominate and the all-P and all-M conformers are strongly favored. NMR data prove that the two edges of the pyridine rings in the triflate salts of 3a-3d are distinct. An Eyring plot of rates obtained from line-shape analysis and 1-D EXCHSY NMR yields an activation enthalpy DeltaH(double dagger) of approximately 12 kcal/mol and activation entropy DeltaS(double dagger) of approximately -15 cal/mol x K for the edge interconversion process, compatible with pyridine rotation around the Pt-N bond. For 3c, this behavior is observed only up to approximately 318 K. At higher temperatures, the Eyring plot is again linear but follows a very different straight line, with a DeltaH(double dagger) of approximately 35 kcal/mol and DeltaS(double dagger) of approximately 60 cal/mol x K. This highly unusual result is further investigated and discussed in the following companion paper.
Journal of the American Chemical Society | 2012
Lukáš Kobr; Ke Zhao; Yongqiang Shen; Angiolina Comotti; Silvia Bracco; Richard K. Shoemaker; Piero Sozzani; Noel A. Clark; John C. Price; Charles T. Rogers; Josef Michl
We describe an approach to regular triangular arrays of dipolar molecular rotors based on insertion of dipolar rotator carrying shafts as guests into channels of a host, tris(o-phenylenedioxy)cyclotriphosphazene (TPP). The rotor guests can either enter the bulk of the host or stay at or near the surface, if a suitable stopper is installed at the end of the shaft. Differential scanning calorimetry, solid-state NMR, and powder X-ray diffraction were used to examine the insertion of a dipolar rotor synthesized for the purpose, 1-n-hexadecyl-12-(2,3-dichlorophenyl)-p-dicarba-closo-dodecaborane, and it was found that it forms a surface inclusion compound. Rotational barriers from 1.2 to 9 kcal/mol were found by dielectric spectroscopy and were attributed to rotors inserted into the surface to different degrees, some rubbing the surface as they turn.
Chemical Communications | 2010
Alex A. Aimetti; Richard K. Shoemaker; Chien-Chi Lin; Kristi S. Anseth
A versatile and rapid synthetic strategy has been developed for the on-resin cyclization of peptides using thiol-ene photochemistry. This unique method exploits the thiol group of natural cysteine amino acids and allows for various alkenes to be incorporated orthogonal to the peptide backbone.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Elizabeth C. Griffith; Barry K. Carpenter; Richard K. Shoemaker; Veronica Vaida
The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.
Biomacromolecules | 2009
McKinley C. Lawson; Richard K. Shoemaker; Kevin B. Hoth; Christopher N. Bowman; Kristi S. Anseth
Surface modification of implantable biomaterials with biologically active functionalities, including antimicrobials, has wide potential for addressing implant-related design problems. Here, four polymerizable vancomycin derivatives bearing either acrylamide or poly(ethylene glycol) (PEG)-acrylate were synthesized and then polymerized through a surface-mediated reaction. Functionalization of vancomycin at either the V3 or the X1 position decreased monomeric activity by 6−75-fold depending on the modification site and the nature of the adduct (P < 0.08 for all comparisons). A 5000 Da PEG chain showed an order of magnitude decrease in activity relative to a 3400 Da counterpart. Molecular dynamics computational simulations were used to explore the mechanisms of this decreased activity. Assays were also conducted to demonstrate the utility of a living radical photopolymerization to create functional, polymeric surfaces with these monomers and to demonstrate surface-based activity against Staphylococcus epidermidis. In particular, the vancomycin−PEG-acrylate derivatives demonstrated a 7−8 log reduction in bacterial colony forming units (CFU) with respect to nonfunctionalized control surfaces.