Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard L. Lord is active.

Publication


Featured researches published by Richard L. Lord.


Journal of Physical Chemistry B | 2013

Ab initio QM/MM calculations show an intersystem crossing in the hydrogen abstraction step in dealkylation catalyzed by AlkB.

Dong Fang; Richard L. Lord; G. Andrés Cisneros

AlkB is a bacterial enzyme that catalyzes the dealkylation of alkylated DNA bases. The rate-limiting step is known to be the abstraction of an H atom from the alkyl group on the damaged base by a Fe(IV)-oxo species in the active site. We have used hybrid ab initio quantum mechanical/molecular mechanical methods to study this step in AlkB. Instead of forming an Fe(III)-oxyl radical from Fe(IV)-oxo near the C-H activation transition state, the reactant is found to be an Fe(III)-oxyl with an intermediate-spin Fe (S = 3/2) ferromagnetically coupled to the oxyl radical, which we explore in detail using molecular orbital and quantum topological analyses. The minimum energy pathway remains on the quintet surface, but there is a transition between (IS)Fe(III)-oxyl and the state with a high-spin Fe (S = 5/2) antiferromagnetically coupled to the oxyl radical. These findings provide clarity for the evolution of the well-known π and σ channels on the quintet surface in the enzyme environment. Additionally, an energy decomposition analysis reveals nine catalytically important residues for the C-H activation step, some of which are conserved in two human homologues. These conserved residues are proposed as targets for experimental mutagenesis studies.


Journal of the American Chemical Society | 2009

Spin Crossover-Coupled Electron Transfer of [M(tacn)2]3+/2+ Complexes (tacn = 1,4,7-Triazacyclononane; M = Cr, Mn, Fe, Co, Ni)

Richard L. Lord; Franklin A. Schultz; Mu-Hyun Baik

The role of spin state equilibria on the thermodynamics of electron transfer in [M(tacn)(2)](3+/2+) complexes (tacn = 1,4,7-triazacyclononane; M = Cr, Mn, Fe, Co, Ni) was examined using density functional theory at the B3LYP*/cc-pVTZ(-f) level coupled to a continuum solvation model to afford excellent agreement between computed and experimental redox properties. An intuitive explanation of the previously observed nonperiodic trend in reduction potentials, which display a sawtooth pattern along the first-row transition metal series, is offered utilizing a novel diagrammatic illustration of the relationship between spin state energetics and reduction potentials. This representation leads to a generalized proposal for analyzing and designing nearly isoenergetic spin states of transition metals in a given ligand environment. A new ligand specific parameter alpha that allows for quantifying the differential reduction potential as a function of the metal identity is introduced, and a novel protocol is presented that divides the ligand-metal interactions into primary and secondary characteristics, which we anticipate will be useful for rationally designing the electronics of transition metal complexes in general.


Journal of the American Chemical Society | 2008

The mechanism of the rhodium(I)-catalyzed [2 + 2 + 1] carbocyclization reaction of dienes and CO: a computational study.

William H. Pitcock; Richard L. Lord; Mu-Hyun Baik

The rhodium(I) catalyzed [2 + 2 + 1] carbocyclization of tethered diene-enes to afford substituted hexahydropentalenones with high levels of diastereoselectivity was modeled using density functional theory. Previously, this transformation was observed to be facile, whereas the analogous bis-ene substrate could not be cyclized under any reasonable conditions. To establish a conceptual understanding of the carbocyclization mechanism and to identify the functional role of the diene fragment we analyzed the simulated reaction mechanisms using the two parent systems. We discovered a thus far unrecognized, but intuitively plausible, role of the CO ligand for controlling the electron density at the metal center, which affects the feasibility of oxidative addition and reductive elimination steps that are key components of the mechanism. Our calculations suggest that the diene moiety is unique and required because of its ability to undergo a eta(2)-->eta(4) reorganization allowing for the thermoneutral expulsion of one CO ligand, which in turn generates an electron-rich, coordinatively saturated Rh(I) center that can efficiently promote the oxidative addition with a low barrier. A number of functionalization strategies were considered explicitly to derive a rational plan for optimizing the catalysis and to expose the roles of the different components of the reactant-catalyst complex.


Inorganic Chemistry | 2013

Reductive coupling of azides mediated by an iron(II) bis(alkoxide) complex.

James A. Bellow; Philip D. Martin; Richard L. Lord; Stanislav Groysman

The iron(III) hexazene complex (RO)2Fe(μ-κ(2):κ(2)-AdN6Ad)Fe(OR)2 (3) was synthesized via reductive coupling of 1-azidoadamantane at the iron(II) bis(alkoxide) complex Fe(OR)2(THF)2 (2). The X-ray crystal structure depicts electron delocalization within the hexazene moiety. Density functional theory studies propose the formation of an iron azide dimer on the route to hexazene, in which each azide is monoreduced and the iron centers are oxidized to the 3+ oxidation state.


Inorganic Chemistry | 2010

Two-electron redox energetics in ligand-bridged dinuclear molybdenum and tungsten complexes.

Richard L. Lord; Franklin A. Schultz; Mu-Hyun Baik

Electron-transfer energetics of bridged dinuclear compounds of the form [(CO)(4)M(mu-L)](2)(0/1-/2-) (M = Mo, W; L = PPh(2)(-), SPh(-)) were explored using density functional theory coupled to a continuum solvation model. The experimentally observed redox potential inversion, a situation where the second of two electron transfers is more thermodynamically favorable than the first, was reproduced within this model. This nonclassical energy ordering is a prerequisite for the apparent transfer of two electrons at one potential, as observed in many biologically and technologically important systems. We pinpoint the origin of this phenomenon to be an unusually unfavorable electrostatic repulsion for the first electron transfer due to the redox noninnocent behavior of the bridging ligands. The extent of redox noninnocence is explained in terms of an orbital energy resonance between the metal-carbonyl and bridging ligand fragments, leading to a general mechanism by which potential inversion could be controlled in diamond-core dinuclear systems.


Journal of the American Chemical Society | 2016

Synthesis and Characterization of a Stable High-Valent Cobalt Carbene Complex

James A. Bellow; Sebastian A. Stoian; Johan van Tol; Andrew Ozarowski; Richard L. Lord; Stanislav Groysman

The formally Co(IV) carbene Co(OR)2(═CPh2) is formed upon the reaction of diphenyldiazomethane with the cobalt bis(alkoxide) precursor Co(OR)2(THF)2. Structural, spectroscopic, and theoretical studies demonstrate that Co(OR)2(═CPh2) has significant high-valent Co(IV)═CPh2 character with non-negligible spin density on the carbene moiety.


Inorganic Chemistry | 2008

Why does cyanide pretend to be a weak field ligand in [Cr(CN)5]3-?

Richard L. Lord; Mu-Hyun Baik

Chemical reasoning based on ligand-field theory suggests that homoleptic cyano complexes should exhibit low-spin configurations, particularly when the coordination sphere is nearly saturated. Recently, the well-known chromium hexacyano complex anion [Cr(CN)6](4-) was shown to lose cyanide to afford [Cr(CN)5](3-) in the absence of coordinating cations. Furthermore, (NEt 4)3[Cr(CN)5] was found to be in a high-spin (S=2) ground state, which challenges the common notion that cyanide is a strong field ligand and should always enforce low-spin configurations. Using density functional theory coupled to a continuum solvation model, we examined both the instability of the hexacyanochromate(II) anion and the relative energies of the different spin states of the pentacyanochromate(II) anion. By making direct comparisons to the analogous Fe (II) complex, we found that cyanide electronically behaves as a strong-field ligand for both metals because the orbital interaction is energetically more favorable in the low-spin configuration than in the corresponding high-spin configuration. The Coulombic repulsion between the anionic cyanide ligands, however, dominates the overall energetics and ultimately gives preference to the high-spin complex, where the ligand-ligand separation is larger. Our calculations highlight that for a quantitative understanding of spin-state energetic ordering in a transition metal complex, ligand-ligand electrostatic interactions must be taken into account in addition to classical ligand-field arguments based on M-L orbital interaction energies.


Journal of the American Chemical Society | 2014

Switching the enantioselectivity in catalytic [4 + 1] cycloadditions by changing the metal center: principles of inverting the stereochemical preference of an asymmetric catalysis revealed by DFT calculations.

Shivnath Mazumder; Douglas W. Crandell; Richard L. Lord; Mu-Hyun Baik

The mechanisms of the asymmetric [4 + 1] carbocyclization of vinylallenes with carbon monoxide catalyzed by Pt(0) and Rh(I) carrying the chiral support ligand (R,R)-Me-DuPHOS (Me-DuPHOS = 1,2-bis(2,5-dimethylphosphorano)benzene) were studied using density functional theoretical models. Previously, it was observed that the (R)-stereoisomer of the 5-substituted 2-alkylidene-3-cyclopentenone products was obtained with Pt(0), but the (S)-enantiomer was formed when Rh(I) metal was used to promote the reaction. Our calculations suggest that the rate-determining step in both cases consists of a C-C coupling between the vinyl end of the vinylallene substrate and carbon monoxide that is accompanied by charge transfer from the metal center to the organic substrate. The reason that the two metals give different enantiomer products lies in the very different geometries of the metal centers in the transition state. The platinum center adopts a square-planar geometry throughout the C-C coupling reaction, which forces the carbonyl to migrate from the metastable, pseudoaxial position into the equatorial plane. During this migration, the carbonyl encounters the spatial constraints caused by the asymmetric DuPHOS ligand, while the vinylallene fragment is pushed away from the metal center. Thus, regardless of the steric demands of the organic substrate, the transition state that places the vinyl in a position that allows the CO to move into the sterically less crowded side of the molecule is preferred. Rh, on the other hand, maintains a square-pyramidal geometry throughout the reaction, keeping the CO ligand at the axial coordination site. The C-C coupling is accomplished by pulling the vinylallene substate closer to the metal and, as a result, the transition state that causes the least amount of steric clashes between the substrate and the DuPHOS ligand is favored, which affords the (S)-enantiomeric product.


European Journal of Organic Chemistry | 2015

Ether Cleavage Re-Investigated: Elucidating the Mechanism of BBr3-Facilitated Demethylation of Aryl Methyl Ethers.

Talon M. Kosak; Heidi A. Conrad; Andrew L. Korich; Richard L. Lord

One of the most well-known, highly utilized reagents for ether cleavage is boron tribromide (BBr3), and this reagent is frequently employed in a 1:1 stoichiometric ratio with ethers. Density functional theory calculations predict a new mechanistic pathway involving charged intermediates for ether cleavage in aryl methyl ethers. Moreover, these calculations predict that one equivalent of BBr3 can cleave up to three equivalents of anisole, producing triphenoxyborane [B(OPh)3] prior to hydrolysis. These predictions were validated by gas chromatography analysis of reactions where the BBr3:anisole ratio was varied. Not only do we confirm that sub-stoichiometric equivalents may be used for ether demethylation, but the findings also support our newly proposed three cycle mechanism for cleavage of aryl methyl ethers.


Inorganic Chemistry | 2013

Synthesis and oxidative reactivity of 2,2'-pyridylpyrrolide complexes of Ni(II).

Nikolay P. Tsvetkov; Chun-Hsing Chen; José G. Andino; Richard L. Lord; Maren Pink; René W. Buell; Kenneth G. Caulton

Synthesis and characterization of divalent nickel complexed by 2-pyridylpyrrolide bidentate ligands are reported, as possible precursors to complexes with redox active ligands. Varied substituents on the pyrrolide, two CF3 (L(2)), two (t)Bu (L(0)), and one of each type (L(1)) are employed and the resulting Ni(L(n))2 complexes show different Lewis acidity toward CO, H2O, tetrahydrofuran (THF), or MeCN, the L(2) case being the most acidic. Density functional theory calculations show that the frontier orbitals of all three Ni(L(n))2 species are localized at the pyrrolide groups of both ligands and Ni(L(n))2(+) can be detected by mass spectrometry and in cyclic voltammograms (CVs). Following cyclic voltammetry studies, which show electroactivity primarily in the oxidative direction, reactions with pyridine N-oxide or Br2 are reported. The former yield simple bis adducts, Ni(L(2))2(pyNO)2 and the latter effects electrophilic aromatic substitution of the one pyrrolide ring hydrogen for both chelates, leaving it brominated.

Collaboration


Dive into the Richard L. Lord's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth G. Caulton

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maren Pink

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyssa C. Cabelof

Grand Valley State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge