Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard L.M. Faull is active.

Publication


Featured researches published by Richard L.M. Faull.


Journal of Neuroscience Methods | 1989

The use of c-fos as a metabolic marker in neuronal pathway tracing

M. Dragunow; Richard L.M. Faull

The use of c-fos protein (Fos) immunocytochemistry as a metabolic marker for tracing neuroanatomical connections, seizure pathways and sites of action of neuroactive drugs is discussed in this report. Fos immunocytochemistry will be very useful for these purposes providing that a number of potential problems are recognized and controlled. These include the observations that Fos exists basally in neurons and can be non-specifically elevated after behavioural stress; neuronal bursting is required to elevate Fos in neurons in anaesthetized animals; drugs such as ketamine can block Fos elevation in neurons; the time-course of Fos induction and decay varies with different inducing stimuli and the brain region sampled; and some brain regions do not express Fos after any treatments tried so far. To overcome these potential problems we list a number of steps that should be followed when using Fos immunocytochemistry as a metabolic marker of brain activity.


Neuroscience | 1989

The organization of the projection from the cerebral cortex to the striatum in the rat

A.J. McGeorge; Richard L.M. Faull

The detailed organization of the corticostriate projection has been investigated in the brain of the rat using the technique of retrograde transport of horseradish peroxidase following the placement of small, iontophoretic injections of horseradish peroxidase conjugated to lectin throughout all major regions of the striatum (caudate-putamen, nucleus accumbens and olfactory tubercle). The results demonstrate that all major regions of the cerebral cortex project to the striatum on both sides of the brain with an ipsilateral predominance. The cells of origin of both the ipsilateral and contralateral corticostriate projections lie mainly in lamina V (especially lamina Va) with very small numbers in lamina III of the neocortex and mesocortex, and in the deep laminae of the allocortex. The results show that each striatal locus receives inputs from several cortical regions, i.e. there is extensive overlap in the corticostriate projection, and that, in general terms, each cortical region projects onto a longitudinally oriented region of the striatum. In particular, the major subdivisions of the cerebral cortex--the neocortex, mesocortex and allocortex--project onto defined but partially overlapping regions of the striatum: the neocortex projects to the caudate-putamen; the mesocortex projects mainly to the medial and ventral regions of the caudate-putamen but also to the ventral striatum (nucleus accumens and olfactory tubercle); and the allocortex projects mainly to the ventral striatum but also to the medial and ventral parts of the caudate-putamen. Within each of these major projection systems there is a further organization, with the constituent parts of each major cortical region projecting to smaller longitudinal components of the major projection fields. Each neocortical area projects to a longitudinal region of the dorsal striatum (caudate-putamen): the sensory and motor areas project topographically onto the dorsolateral striatum such that the rostral sensorimotor cortex (head areas) projects to central and ventral regions and the more caudal sensorimotor cortex (limb areas) projects to dorsal regions of the dorsolateral striatum; the visual area projects to the dorsomedial striatum; and the auditory area projects to the medial striatum. Each mesocortical area projects to a longitudinal area of the striatum: the most posteromedial mesocortex (the retrosplenial area) projects to the dorsomedial striatum; more anterior and lateral parts of the mesocortex project to more ventral parts of the striatum: and the most lateral mesocortex (the agranular insular and perirhinal areas) project to the ventrolateral striatum.(ABSTRACT TRUNCATED AT 400 WORDS)


Science | 2007

Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension

Maurice A. Curtis; Monica Kam; Ulf Nannmark; Michelle F. Anderson; Mathilda Zetterström Axell; Carsten Wikkelsö; Stig Holtås; Willeke M. C. van Roon-Mom; Thomas Björk-Eriksson; Claes Nordborg; Jonas Frisén; M. Dragunow; Richard L.M. Faull; Peter Eriksson

The rostral migratory stream (RMS) is the main pathway by which newly born subventricular zone cells reach the olfactory bulb (OB) in rodents. However, the RMS in the adult human brain has been elusive. We demonstrate the presence of a human RMS, which is unexpectedly organized around a lateral ventricular extension reaching the OB, and illustrate the neuroblasts in it. The RMS ensheathing the lateral olfactory ventricular extension, as seen by magnetic resonance imaging, cell-specific markers, and electron microscopy, contains progenitor cells with migratory characteristics and cells that incorporate 5-bromo-2′-deoxyuridine and become mature neurons in the OB.


Neuroscience | 1997

Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain

Michelle Glass; Richard L.M. Faull; M. Dragunow

The anatomical distribution and density of cannabinoid receptors in the human brain was studied in one fetal (33 weeks gestation), two neonatal (aged three to six months) and eight adult (aged 21-81 years) human cases using quantitative receptor autoradiography following in vitro labelling of sections with the synthetic cannabinoid agonist [3H]CP55,940. Cannabinoid receptors were distributed in a heterogeneous fashion throughout the adult human brain and spinal cord. The allocortex contained very high concentrations of cannabinoid receptor binding sites in the dentate gyrus, Ammonss horn and subiculum of the hippocampal formation; high concentrations of receptors were also present in the entorhinal cortex and amygdaloid complex. Cannabinoid receptor binding sites were also present throughout all regions of the neocortex, where they showed a marked variation in density between the primary, secondary and associational cortical regions: the greatest densities of receptors were present in the associational cortical regions of the frontal and limbic lobes, with moderate densities in the secondary sensory and motor cortical regions, and with the lowest densities of receptors in the primary sensory and motor cortical regions. Relatively high concentrations of cannabinoid receptors were consistently seen in cortical regions of the left (dominant) hemisphere, known to be associated with verbal language functions. In all of the cortical regions, the pattern and density of receptor labelling followed the neocortical laminar organization, with the greatest density of receptors localized in two discrete bands--a clearly delineated narrow superficial band which coincided with lamina I and a deeper broader, conspicuous band of labelling which corresponded to laminae V and VI. Labelling in the intervening cortical laminae (II-IV) showed lower densities, with a well delineated narrow band of label in the middle of laminae IV in the associational cortical regions. The thalamus showed a distinctive heterogeneous distribution of cannabinoid receptors, with the highest concentration of receptors localized in the mediodorsal nucleus, anterior nuclear complex, and in the midline and intralaminar complex of nuclei, i.e. in thalamic nuclei which have connectional affiliations with the associational cortical areas. The basal ganglia showed a distinctive heterogeneous pattern of receptor binding, with the very highest concentrations in the globus pallidus internus, moderate concentrations in the globus pallidus externus and ventral pallidum, and moderately low levels of binding throughout the striatal complex. In the midbrain, some of the highest levels of cannabinoid receptor binding sites in the human brain were present in the substantia nigra pars reticulata, with very low levels of labelling in all other midbrain areas. The highest densities of cannabinoid receptor binding in the hindbrain were localized in the molecular layer of the cerebellar cortex and the dorsal motor nucleus of the vagus, with moderate densities of receptors in the nucleus of the solitary tract. The spinal cord showed very low levels of receptor binding. Studies on the distribution of cannabinoid receptors in the fetal and neonatal human brain showed similar patterns of receptor distribution to that observed in the adult human brain, except that the density of receptor binding was generally markedly higher, especially in the basal ganglia and substantia nigra. The pattern of cannabinoid receptor labelling in the striatum showed a striking patchy pattern of organization which was especially conspicuous in the fetal brain. These results show that cannabinoid receptor binding sites in the human brain are localized mainly in: forebrain areas associated with higher cognitive functions; forebrain, midbrain and hindbrain areas associated with the control of movement; and in hindbrain areas associated with the control of motor and sensory functions of the autonomic nervous system. (AB


Proceedings of the National Academy of Sciences of the United States of America | 2003

Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain

Maurice A. Curtis; Ellen B. Penney; Andree Pearson; Willeke M. C. van Roon-Mom; Niqi J. Butterworth; M. Dragunow; Bronwen Connor; Richard L.M. Faull

Neurogenesis has recently been observed in the adult human brain, suggesting the possibility of endogenous neural repair. However, the augmentation of neurogenesis in the adult human brain in response to neuronal cell loss has not been demonstrated. This study was undertaken to investigate whether neurogenesis occurs in the subependymal layer (SEL) adjacent to the caudate nucleus in the human brain in response to neurodegeneration of the caudate nucleus in Huntingtons disease (HD). Postmortem control and HD human brain tissue were examined by using the cell cycle marker proliferating cell nuclear antigen (PCNA), the neuronal marker βIII-tubulin, and the glial cell marker glial fibrillary acidic protein (GFAP). We observed a significant increase in cell proliferation in the SEL in HD compared with control brains. Within the HD group, the degree of cell proliferation increased with pathological severity and increasing CAG repeats in the HD gene. Most importantly, PCNA+ cells were shown to coexpress βIII-tubulin or GFAP, demonstrating the generation of neurons and glial cells in the SEL of the diseased human brain. Our results provide evidence of increased progenitor cell proliferation and neurogenesis in the diseased adult human brain and further indicate the regenerative potential of the human brain.


Neuroscience | 2000

The pattern of neurodegeneration in huntington's disease : A comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington's disease

Michelle Glass; M. Dragunow; Richard L.M. Faull

In order to investigate the sequence and pattern of neurodegeneration in Huntingtons disease, the distribution and density of cannabinoid CB(1), dopamine D(1) and D(2), adenosine A(2a) and GABA(A) receptor changes were studied in the basal ganglia in early (grade 0), intermediate (grades 1, 2) and advanced (grade 3) neuropathological grades of Huntingtons disease. The results showed a sequential pattern of receptor changes in the basal ganglia with increasing neuropathological grades of Huntingtons disease. First, the very early stages of the disease (grade 0) were characterized by a major loss of cannabinoid CB(1), dopamine D(2) and adenosine A(2a) receptor binding in the caudate nucleus, putamen and globus pallidus externus and an increase in GABA(A) receptor binding in the globus pallidus externus. Second, intermediate neuropathological grades (grades 1, 2) showed a further marked decrease of CB(1) receptor binding in the caudate nucleus and putamen; this was associated with a loss of D(1) receptors in the caudate nucleus and putamen and a loss of both CB(1) and D(1) receptors in the substantia nigra. Finally, advanced grades of Huntingtons disease showed an almost total loss of CB(1) receptors and the further depletion of D(1) receptors in the caudate nucleus, putamen and globus pallidus internus, and an increase in GABA(A) receptor binding in the globus pallidus internus. These findings suggest that there is a sequential but overlapping pattern of neurodegeneration of GABAergic striatal efferent projection neurons in increasing neuropathological grades of Huntingtons disease. First, GABA/enkephalin striatopallidal neurons projecting to the globus pallidus externus are affected in the very early grades of the disease. Second, GABA/substance P striatonigral neurons projecting to the substantia nigra are involved at intermediate neuropathological grades. Finally, GABA/substance P striatopallidal neurons projecting to the globus pallidus internus are affected in the late grades of the disease. In addition, the finding that cannabinoid receptors are dramatically reduced in all regions of the basal ganglia in advance of other receptor changes in Huntingtons disease suggests a possible role for cannabinoids in the progression of neurodegeneration in Huntingtons disease.


Molecular Brain Research | 1997

Brain-derived neurotrophic factor is reduced in Alzheimer's disease

B Connor; Deborah Young; Qiao Yan; Richard L.M. Faull; B Synek; Michael Dragunow

Alzheimers disease may be due to a deficiency in neurotrophin protein or receptor expression. Consistent with this hypothesis, a reduction in BDNF mRNA expression has been observed in human post-mortem Alzheimers disease hippocampi. To further investigate this observation, we examined whether the alteration in BDNF expression also occurred at the protein level in human post-mortem Alzheimers disease hippocampi and temporal cortices using immunohistochemical techniques. We observed a reduction in the intensity and number of BDNF-immunoreactive cell bodies within both the Alzheimers disease hippocampus and temporal cortex when compared to normal tissue. These results support and extend previous findings that BDNF mRNA is reduced in the human Alzheimers disease hippocampus and temporal cortex, and suggest that a loss of BDNF may contribute to the progressive atrophy of neurons in Alzheimers disease.


Neuroreport | 1995

In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes.

M. Dragunow; Richard L.M. Faull; P. Lawlor; Erica J. Beilharz; K. Singleton; E. B. Walker; E. Mee

&NA; To test the hypothesis that apoptosis is involved in human brain neurodegenerative disorders, we investigated whether DNA fragmentation occurs in Alzheimers disease (AD). Huntingtons disease (HD) and Parkinsons disease, as well as in temporal lobe epilepsy, using neurologically normal post‐mortem human brain tissue as a control. Using in situ end labelling of DNA, we found evidence of DNA fragmentation in cells in temporal cortex and hippocampus from patients with AD and in striatum from those with HD. In contrast, only scattered DNA fragmentation positive cells were detected in the pial surfaces of some of the neurologically normal human brains. Thus, cells in the HD striatum and AD temporal cortex exhibited DNA fragmentation, suggesting that apoptosis may be involved in these disorders.


Progress in Neurobiology | 2000

Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases

Tajrena Alexi; Cesario V. Borlongan; Richard L.M. Faull; Chris E. Williams; Ross Clark; Peter D. Gluckman; P. Hughes

There are three main mechanisms of neuronal cell death which may act separately or cooperatively to cause neurodegeneration. This lethal triplet of metabolic compromise, excitotoxicity, and oxidative stress causes neuronal cell death that is both necrotic and apoptotic in nature. Aspects of each of these three mechanisms are believed to play a role in the neurodegeneration that occurs in both Parkinsons and Huntingtons diseases. Strategies to rescue or protect injured neurons usually involve promoting neuronal growth and function or interfering with neurotoxic processes. Considerable research has been done on testing a large array of neuroprotective agents using animal models which mimic these disorders. Some of these approaches have progressed to the clinical arena. Here, we review neuroprotective strategies which have been found to successfully ameliorate the neurodegeneration associated with Parkinsons and Huntingtons diseases. First, we will give an overview of the mechanisms of cell death and the background of Parkinsons and Huntingtons diseases. Then we will elaborate on a range of neuroprotective strategies, including neurotrophic factors, anti-excitotoxins, antioxidants, bioenergetic supplements, anti-apoptotics, immunosuppressants, and cell transplantation techniques. Most of these approaches hold promise as potential therapies in the treatment of these disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease

Kirupa Sathasivam; Andreas Neueder; Theresa A. Gipson; Christian Landles; Agnesska C. Benjamin; Marie K. Bondulich; Donna L. Smith; Richard L.M. Faull; Raymund A.C. Roos; David Howland; Peter J. Detloff; David E. Housman; Gillian P. Bates

Huntington disease (HD) is a devastating, late-onset, inherited neurodegenerative disorder that manifests with personality changes, movement disorders, and cognitive decline. It is caused by a CAG repeat expansion in exon 1 of the HTT gene that translates to a polyglutamine tract in the huntingtin protein (HTT). The formation of HTT fragments has been implicated as an essential step in the molecular pathogenesis of HD and several proteases that cleave HTT have been identified. However, the importance of smaller N-terminal fragments has been highlighted by their presence in HD postmortem brains and by the fact that nuclear inclusions are only detected by antibodies to the N terminus of HTT. Despite an intense research effort, the precise length of these fragments and the mechanism by which they are generated remains unknown. Here we show that CAG repeat length–dependent aberrant splicing of exon 1 HTT results in a short polyadenylated mRNA that is translated into an exon 1 HTT protein. Given that mutant exon 1 HTT proteins have consistently been shown to be highly pathogenic in HD mouse models, the aberrant splicing of HTT mRNA provides a mechanistic basis for the molecular pathogenesis of HD. RNA-targeted therapeutic strategies designed to lower the levels of HTT are under development. Many of these approaches would not prevent the production of exon 1 HTT and should be reviewed in light of our findings.

Collaboration


Dive into the Richard L.M. Faull's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Dragunow

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Waldvogel

Health Science University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge