Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Lindqvist is active.

Publication


Featured researches published by Richard Lindqvist.


PLOS ONE | 2014

Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance

Naveed Asghar; Pontus Lindblom; Wessam Melik; Richard Lindqvist; Mats Haglund; Pia Forsberg; Anna K. Överby; Åshild Kristine Andreassen; Per-Eric Lindgren; Magnus Johansson

The increased distribution of the tick-borne encephalitis virus (TBEV) in Scandinavia highlights the importance of characterizing novel sequences within the natural foci. In this study, two TBEV strains: the Norwegian Mandal 2009 (questing nymphs pool) and the Swedish Saringe 2009 (blood-fed nymph) were sequenced and phylogenetically characterized. Interestingly, the sequence of Mandal 2009 revealed the shorter form of the TBEV genome, similar to the highly virulent Hypr strain, within the 3′ non-coding region (3′NCR). A different genomic structure was found in the 3′NCR of Saringe 2009, as in-depth analysis demonstrated TBEV variants with different lengths within the poly(A) tract. This shows that TBEV quasispecies exists in nature and indicates a putative shift in the quasispecies pool when the virus switches between invertebrate and vertebrate environments. This prompted us to further sequence and analyze the 3′NCRs of additional Scandinavian TBEV strains and control strains, Hypr and Neudoerfl. Toro 2003 and Habo 2011 contained mainly a short (A)3C(A)6 poly(A) tract. A similar pattern was observed for the human TBEV isolates 1993/783 and 1991/4944; however, one clone of 1991/4944 contained an (A)3C(A)11 poly(A) sequence, demonstrating that quasispecies with longer poly(A) could be present in human isolates. Neudoerfl has previously been reported to contain a poly(A) region, but to our surprise the re-sequenced genome contained two major quasispecies variants, both lacking the poly(A) tract. We speculate that the observed differences are important factors for the understanding of virulence, spread, and control of the TBEV.


Journal of Virology | 2018

Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation

Christakis Panayiotou; Richard Lindqvist; Chaitanya Kurhade; Kirstin Vonderstein; Jenny Pasto; Karin Edlund; Arunkumar S. Upadhyay; Anna K. Överby

ABSTRACT Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperins ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus, affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to infection, effectively restricts the replication of several flaviviruses, but the exact molecular mechanisms have not been elucidated. Here we have identified a novel mechanism employed by viperin to inhibit the replication of two flaviviruses: tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin induced selective degradation via the proteasome of TBEV and ZIKV nonstructural 3 (NS3) protein, which is involved in several steps of the viral life cycle. Furthermore, viperin also reduced the stability of several other viral proteins in a NS3-dependent manner, suggesting a central role of NS3 in viperins antiflavivirus activity. Taking the results together, our work shows important similarities and differences among the members of the genus Flavivirus and could lead to the possibility of therapeutic intervention.


Scientific Reports | 2016

The role of the poly(A) tract in the replication and virulence of tick-borne encephalitis virus

Naveed Asghar; Yi-Ping Lee; Emma Nilsson; Richard Lindqvist; Wessam Melik; Andrea Kröger; Anna K. Överby; Magnus Johansson

The tick-borne encephalitis virus (TBEV) is a flavivirus transmitted to humans, usually via tick bites. The virus causes tick-borne encephalitis (TBE) in humans, and symptoms range from mild flu-like symptoms to severe and long-lasting sequelae, including permanent brain damage. It has been suggested that within the population of viruses transmitted to the mammalian host, quasispecies with neurotropic properties might become dominant in the host resulting in neurological symptoms. We previously demonstrated the existence of TBEV variants with variable poly(A) tracts within a single blood-fed tick. To characterize the role of the poly(A) tract in TBEV replication and virulence, we generated infectious clones of Torö-2003 with the wild-type (A)3C(A)6 sequence (Torö-6A) or with a modified (A)3C(A)38 sequence (Torö-38A). Torö-38A replicated poorly compared to Torö-6A in cell culture, but Torö-38A was more virulent than Torö-6A in a mouse model of TBE. Next-generation sequencing of TBEV genomes after passaging in cell culture and/or mouse brain revealed mutations in specific genomic regions and the presence of quasispecies that might contribute to the observed differences in virulence. These data suggest a role for quasispecies development within the poly(A) tract as a virulence determinant for TBEV in mice.


Emerging Infectious Diseases | 2016

Human Tick-Borne Encephalitis and Characterization of Virus from Biting Tick

Anna J. Henningsson; Richard Lindqvist; Peter Norberg; Pontus Lindblom; Anette Roth; Pia Forsberg; Tomas Bergström; Anna K. Överby; Per-Eric Lindgren

We report a case of human tick-borne encephalitis (TBE) in which the TBE virus was isolated from the biting tick. Viral growth and sequence were characterized and compared with those of a reference strain. Virus isolation from ticks from patients with TBE may offer a new approach for studies of epidemiology and pathogenicity.


Journal of Neuroinflammation | 2018

Cell-type- and region-specific restriction of neurotropic flavivirus infection by viperin

Richard Lindqvist; Chaitanya Kurhade; Jonathan Gilthorpe; Anna K. Överby

BackgroundFlaviviruses are a group of diverse and emerging arboviruses and an immense global health problem. A number of flaviviruses are neurotropic, causing severe encephalitis and even death. Type I interferons (IFNs) are the first line of defense of the innate immune system against flavivirus infection. IFNs elicit the concerted action of numerous interferon-stimulated genes (ISGs) to restrict both virus infection and replication. Viperin (virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an ISG with broad-spectrum antiviral activity against multiple flaviviruses in vitro. Its activity in vivo restricts neurotropic infections to specific regions of the central nervous system (CNS). However, the cell types in which viperin activity is required are unknown. Here we have examined both the regional and cell-type specificity of viperin in the defense against infection by several model neurotropic flaviviruses.MethodsViral burden and IFN induction were analyzed in vivo in wild-type and viperin−/− mice infected with Langat virus (LGTV). The effects of IFN pretreatment were tested in vitro in primary neural cultures from different brain regions in response to infection with tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Zika virus (ZIKV).ResultsViperin activity restricted nonlethal LGTV infection in the spleen and the olfactory bulb following infection via a peripheral route. Viperin activity was also necessary to restrict LGTV replication in the olfactory bulb and the cerebrum following CNS infection, but not in the cerebellum. In vitro, viperin could restrict TBEV replication in primary cortical neurons, but not in the cerebellar granule cell neurons. Interferon-induced viperin was also very important in primary cortical neurons to control TBEV, WNV, and ZIKV.ConclusionsOur findings show that viperin restricts replication of neurotropic flaviviruses in the CNS in a region- and cell-type-specific manner. The most important sites of activity are the olfactory bulb and cerebrum. Activity within the cerebrum is required in the cortical neurons in order to restrict spread. This study exemplifies cell type and regional diversity of the IFN response within the CNS and shows the importance of a potent broad-spectrum antiviral ISG.


Viruses | 2018

Tick-Borne Flaviviruses and the Type I Interferon Response

Richard Lindqvist; Arunkumar S. Upadhyay; Anna K. Överby

Flaviviruses are globally distributed pathogens causing millions of human infections every year. Flaviviruses are arthropod-borne viruses and are mainly transmitted by either ticks or mosquitoes. Mosquito-borne flaviviruses and their interactions with the innate immune response have been well-studied and reviewed extensively, thus this review will discuss tick-borne flaviviruses and their interactions with the host innate immune response.


Journal of Neuroinflammation | 2016

Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects

Richard Lindqvist; Filip Mundt; Jonathan Gilthorpe; Silke Wölfel; Nelson O. Gekara; Andrea Kröger; Anna K. Överby


Journal of Virology | 2018

Erratum for Panayiotou et al., “Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation”

Christakis Panayiotou; Richard Lindqvist; Chaitanya Kurhade; Kirstin Vonderstein; Jenny Pasto; Karin Edlund; Arunkumar S. Upadhyay; Anna K. Överby


Archive | 2017

The role of the type I interferons and viperin during neurotropic flavivirus infection

Richard Lindqvist


Archive | 2017

Brain region- and cell type-specific role of viperin in neurotropic flavivirus infection

Richard Lindqvist

Collaboration


Dive into the Richard Lindqvist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Kröger

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge