Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Luong is active.

Publication


Featured researches published by Richard Luong.


Nano Research | 2010

High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes

Joshua T. Robinson; Kevin Welsher; Scott M. Tabakman; Sarah P. Sherlock; Hailiang Wang; Richard Luong; Hongjie Dai

Short single-walled carbon nanotubes (SWNTs) functionalized by PEGylated phospholipids are biologically non-toxic and long-circulating nanomaterials with intrinsic near infrared photoluminescence (NIR PL), characteristic Raman spectra, and strong optical absorbance in the near infrared (NIR). This work demonstrates the first dual application of intravenously injected SWNTs as photoluminescent agents for in vivo tumor imaging in the 1.0–1.4 μm emission region and as NIR absorbers and heaters at 808 nm for photothermal tumor elimination at the lowest injected dose (70 μg of SWNT/mouse, equivalent to 3.6 mg/kg) and laser irradiation power (0.6 W/cm2) reported to date. Ex vivo resonance Raman imaging revealed the SWNT distribution within tumors at a high spatial resolution. Complete tumor elimination was achieved for large numbers of photothermally treated mice without any toxic side effects after more than six months post-treatment. Further, side-by-side experiments were carried out to compare the performance of SWNTs and gold nanorods (AuNRs) at an injected dose of 700 μg of AuNR/mouse (equivalent to 35 mg/kg) in NIR photothermal ablation of tumors in vivo. Highly effective tumor elimination with SWNTs was achieved at 10 times lower injected doses and lower irradiation powers than for AuNRs. These results suggest there are significant benefits of utilizing the intrinsic properties of biocompatible SWNTs for combined cancer imaging and therapy.


Journal of Clinical Investigation | 2013

Depleting tumor-specific Tregs at a single site eradicates disseminated tumors.

Aurélien Marabelle; Holbrook Kohrt; Idit Sagiv-Barfi; Bahareh Ajami; Robert C. Axtell; Gang Zhou; Ranjani Rajapaksa; Michael R. Green; James Torchia; Joshua Brody; Richard Luong; Michael D. Rosenblum; Lawrence Steinman; Hyam I. Levitsky; Victor Tse; Ronald Levy

Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti-CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response.


ACS Nano | 2013

Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy

Alexander L. Antaris; Joshua T. Robinson; Omar K. Yaghi; Guosong Hong; Shuo Diao; Richard Luong; Hongjie Dai

Single-walled carbon nanotubes (SWCNTs) exhibit intrinsic fluorescence and strong optical absorption in the near-infrared (NIR) biological window (0.7-1.4 μm), rendering them ideal for in vivo imaging and photothermal therapy. Advances in SWCNT sorting have led to improved nanoelectronics and are promising for nanomedicine. To date, SWCNTs used in vivo consist of heterogeneous mixtures of nanotubes and only a small subset of chirality nanotubes fluoresces or heats under a NIR laser. Here, we demonstrate that separated (6,5) SWCNTs exchanged into a biocompatible surfactant, C18-PMH-mPEG, are more than 6-fold brighter in photoluminescence on the per mass basis, afford clear tumor imaging, and reach requisite photothermal tumor ablation temperatures with a >10-fold lower injected dose than as-synthesized SWCNT mixtures while exhibiting relatively low (6,5) accumulation in the reticuloendothelial system. The intravenous injection of ∼4 μg of (6,5) SWCNTs per mouse (0.254 mg/kg) for dual imaging/photothermal therapy is, by far, the lowest reported dose for nanoparticle-based in vivo therapeutics.


American Journal of Sports Medicine | 2012

Comparison of the Acute Inflammatory Response of Two Commercial Platelet-Rich Plasma Systems in Healthy Rabbit Tendons

Jason L. Dragoo; Hillary J. Braun; Jennah L. Durham; Bethany A. Ridley; Justin I. Odegaard; Richard Luong; Steven P. Arnoczky

Background: Numerous studies have shown platelet-rich plasma (PRP) preparations differ with respect to the inclusion of certain blood components, which may affect the host’s cellular response. Hypothesis: This study evaluated the inflammatory effect of Biomet GPS III leukocyte-rich PRP (LR-PRP) versus MTF Cascade leukocyte-poor PRP (LP-PRP) after intratendinous injection in an animal model. The authors anticipated that LR-PRP would incite a greater acute inflammatory response than LP-PRP. Study Design: Controlled laboratory study. Methods: A total of 17 skeletally mature New Zealand White rabbits were tested. In all cases, healthy patellar tendons were treated. In the control animals, one patellar tendon was injected with 2 mL autologous whole blood, and the other was injected with 2 mL sterile saline. Seven total tendons were injected with whole blood, and 7 tendons were injected with saline. In the experimental animals, one patellar tendon was injected with 2 mL LR-PRP, and the other was injected with 2 mL LP-PRP. Ten tendons were injected with LR-PRP, and 10 tendons were injected with LP-PRP. Animals were euthanized at 5 or 14 days after injection. Tendons were harvested and stained using hematoxylin and eosin and scored semi-quantitatively for total white blood cells (WBCs), mononuclear cells (macrophages and lymphocytes), polymorphonuclear cells (PMNs), vascularity, fiber structure, and fibrosis. Results: At 5 days after injection, tendons treated with LR-PRP had significantly greater overall tendon scores (6.3 ± 1.79 vs 1.8 ± 1.64, P = .012), as well as mean scores for fiber structure (1.4 ± 0.22 vs 0.50 ± 0.50, P = .012), denoting disrupted composition, total WBCs (1.1 ± 0.89 vs 0.10 ± 0.22, P = .014), mononuclear cells (macrophages and lymphocytes) (0.80 ± 0.45 vs 0.10 ± 0.22, P = .014), vascularity (1.7 ± 0.27 vs 0.80 ± 0.16, P = .008), and fibrosis (1.0 ± 0.35 vs 0.3 ± 0.45, P = .037) compared with tendons treated with LP-PRP. Otherwise, there were no significant differences in mononuclear cells (P = .590), PMN cells (P = 1.00), total WBCs (P = .811), vascularity (P = .650), or total tendon score (P = .596) in any of the treatment groups at 14 days. Conclusion: Compared with leukocyte-poor Cascade PRP, leukocyte-rich GPS III PRP causes a significantly greater acute inflammatory response at 5 days after injection. There is no significant difference in the inflammatory response or cellularity regardless of the injection type at 14 days after intratendinous injection. Clinical Relevance: Platelet-rich plasma injections are frequently prepared using commercial systems and are administered for clinical treatment of chronic tendinopathy. It is important to characterize the cellular responses elucidated by different injection preparations to further understand their effect on tissue healing and aid clinical decision making. Future investigations are necessary to apply these findings to the clinical setting.


Nano Letters | 2012

A Novel Clinically Translatable Fluorescent Nanoparticle for Targeted Molecular Imaging of Tumors in Living Subjects

Jinhao Gao; Kai Chen; Richard Luong; Donna M. Bouley; Hua Mao; Tiecheng Qiao; Sanjiv S. Gambhir; Zhen Cheng

The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)β(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future.


Science Translational Medicine | 2011

The Fate and Toxicity of Raman-Active Silica-Gold Nanoparticles in Mice

Avnesh S. Thakor; Richard Luong; Ramasamy Paulmurugan; Frank I. Lin; Paul Kempen; Cristina Zavaleta; Pauline Chu; Tarik F. Massoud; Robert Sinclair; Sanjiv S. Gambhir

Gold-core nanoparticles designed for imaging by Raman spectroscopy in patients are generally nontoxic in mice, causing only temporary liver inflammation when given intravenously. Minimal Toxicity of Nanoparticles for Raman Imaging Nanoparticles are just the right size to interact with molecules and cells. But how best to harness them as tools in the service of medicine? The authors of this paper have pursued one application: nanoparticles created to image specific cells and molecules from inside living animals—and eventually patients—via Raman spectroscopy, a method based on inelastic light scattering. Although the Raman effect is weak, a gold core inside the nanoparticles boosts the Raman signal enough so that it can be detected inside living tissue. To prepare the ground for use of these nanoparticles in imaging colorectal cancer in patients, Thakor et al. thoroughly tested their toxicity in mice. When introduced through the colon, these gold-core nanoparticles did not cross the gut lining into the body of the mice, a result that bodes well for their future as diagnostic and treatment vehicles for gut diseases. The authors first followed the fate of the silica-gold nanoparticles after the intravenous injection of a high dose into mice. Although their intravenous injection did cause temporary inflammation and some apoptosis in the liver 24 hours later, the nanoparticles were taken up by macrophages in the liver and spleen and eventually cleared from the body through the reticulo-endothelial system. A comprehensive survey of the mice revealed no ill effects of the nanoparticles on their general health or behavior. Their ECGs, blood pressure and heart rate were normal, and a panel of measurements of blood cells and chemistry revealed no effect of the particles. When the authors administered the nanoparticles into the colon, through the rectum, there was minimal evidence that the particles even passed into the animals’ circulation. Even the limited reaction in the liver seen after intravenous administration was absent and the particles were cleared within 5 minutes. The silica-gold nanoparticle tested in this paper can be coated with specific targeting molecules; the addition of one of these—a heptapeptide—did not increase the toxicity after treatment via the colon. These results set the stage for Raman spectroscopic imaging of these targeted, gold-core nanoparticles in diagnosis of colorectal cancer or other disease of hollow viscera. Attachment of premalignant cancer specific targeting groups to the particle would allow detection of early lesions with a endoscopic Raman probe, an approach that could be extended to other clinical situations. Raman spectroscopy is an optical imaging method that is based on the Raman effect, the inelastic scattering of a photon when energy is absorbed from light by a surface. Although Raman spectroscopy is widely used for chemical and molecular analysis, its clinical application has been hindered by the inherently weak nature of the Raman effect. Raman-silica-gold-nanoparticles (R-Si-Au-NPs) overcome this limitation by producing larger Raman signals through surface-enhanced Raman scattering. Because we are developing these particles for use as targeted molecular imaging agents, we examined the acute toxicity and biodistribution of core polyethylene glycol (PEG)–ylated R-Si-Au-NPs after different routes of administration in mice. After intravenous administration, PEG-R-Si-Au-NPs were removed from the circulation by macrophages in the liver and spleen (that is, the reticuloendothelial system). At 24 hours, PEG-R-Si-Au-NPs elicited a mild inflammatory response and an increase in oxidative stress in the liver, which subsided by 2 weeks after administration. No evidence of significant toxicity was observed by measuring clinical, histological, biochemical, or cardiovascular parameters for 2 weeks. Because we are designing targeted PEG-R-Si-Au-NPs (for example, PEG-R-Si-Au-NPs labeled with an affibody that binds specifically to the epidermal growth factor receptor) to detect colorectal cancer after administration into the bowel lumen, we tested the toxicity of the core nanoparticle after administration per rectum. We observed no significant bowel or systemic toxicity, and no PEG-R-Si-Au-NPs were detected systemically. Although additional studies are required to investigate the long-term effects of PEG-R-Si-Au-NPs and their toxicity when carrying the targeting moiety, the results presented here support the idea that PEG-R-Si-Au-NPs can be safely used in living subjects, especially when administered rectally.


British Journal of Cancer | 2010

Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype

Kurosh Ameri; Richard Luong; Haiyu Zhang; Ashley A. Powell; K D Montgomery; I Espinosa; Donna M. Bouley; Adrian L. Harris; Stefanie S. Jeffrey

Background:Tumours contain hypoxic regions that select for an aggressive cell phenotype; tumour hypoxia induces metastasis-associated genes. Treatment refractory patients with metastatic cancer show increased numbers of circulating tumour cells (CTCs), which are also associated with disease progression. The aim of this study was to examine the as yet unknown relationship between hypoxia and CTCs.Methods:We generated human MDA-MB-231 orthotopic xenografts and, using a new technology, isolated viable human CTCs from murine blood. The CTCs and parental MDA-MB-231 cells were incubated at 21 and 0.2% (hypoxia) oxygen, respectively. Colony formation was assayed and levels of hypoxia- and anoxia-inducible factors were measured. Xenografts generated from CTCs and parental cells were compared.Results:MDA-MB-231 xenografts used to generate CTCs were hypoxic, expressing hypoxia factors: hypoxia-inducible factor1 alpha (HIF1α) and glucose transporter protein type 1 (GLUT1), and anoxia-induced factors: activating transcription factor 3 and 4 (ATF3 and ATF4). Parental MDA-MB-231 cells induced ATF3 in hypoxia, whereas CTCs expressed it constitutively. Asparagine synthetase (ASNS) expression was also higher in CTCs. Hypoxia induced ATF4 and the HIF1α target gene apelin in CTCs, but not in parental cells. Hypoxia induced lower levels of carbonic anhydrase IX (CAIX), GLUT1 and BCL2/adenovirus E1B 19-KD protein-interacting protein 3 (BNIP3) proteins in CTCs than in parental cells, supporting an altered hypoxia response. In chronic hypoxia, CTCs demonstrated greater colony formation than parental cells. Xenografts generated from CTCs were larger and heavier, and metastasised faster than MDA-MB-231 xenografts.Conclusion:CTCs show an altered hypoxia response and an enhanced aggressive phenotype in vitro and in vivo.


PLOS Genetics | 2012

Modulating the Strength and Threshold of NOTCH Oncogenic Signals by mir-181a-1/b-1

Rita Fragoso; Tin Mao; Song Wang; Steven Schaffert; Xue Gong; Sibiao Yue; Richard Luong; Hyeyoung Min; Yumi Yashiro-Ohtani; Mark M. Davis; Chang Zheng Chen

Oncogenes, which are essential for tumor initiation, development, and maintenance, are valuable targets for cancer therapy. However, it remains a challenge to effectively inhibit oncogene activity by targeting their downstream pathways without causing significant toxicity to normal tissues. Here we show that deletion of mir-181a-1/b-1 expression inhibits the development of Notch1 oncogene-induced T cell acute lymphoblastic leukemia (T-ALL). mir-181a-1/b-1 controls the strength and threshold of Notch activity in tumorigenesis in part by dampening multiple negative feedback regulators downstream of NOTCH and pre-T cell receptor (TCR) signaling pathways. Importantly, although Notch oncogenes utilize normal thymic progenitor cell genetic programs for tumor transformation, comparative analyses of mir-181a-1/b-1 function in normal thymocyte and tumor development demonstrate that mir-181a-1/b-1 can be specifically targeted to inhibit tumor development with little toxicity to normal development. Finally, we demonstrate that mir-181a-1/b-1, but not mir-181a-2b-2 and mir-181-c/d, controls the development of normal thymic T cells and leukemia cells. Together, these results illustrate that NOTCH oncogene activity in tumor development can be selectively inhibited by targeting the molecular networks controlled by mir-181a-1/b-1.


Blood | 2011

Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4–dependent mechanism

Dennis B. Leveson-Gower; Janelle A. Olson; Emanuela Sega; Richard Luong; Jeanette Baker; Robert Zeiser; Robert S. Negrin

CD4(+) natural killer T (NKT) cells, along with CD4(+)CD25(+) regulatory T cells (Tregs), are capable of controlling aberrant immune reactions. We explored the adoptive transfer of highly purified (> 95%) CD4(+)NKT cells in a murine model of allogeneic hematopoietic cell transplantation (HCT). NKT cells follow a migration and proliferation pattern similar to that of conventional T cells (Tcons), migrating initially to secondary lymphoid organs followed by infiltration of graft-versus-host disease (GVHD) target tissues. NKT cells persist for more than 100 days and do not cause significant morbidity or mortality. Doses of NKT cells as low as 1.0 × 10(4) cells suppress GVHD caused by 5.0 × 10(5) Tcons in an interleukin-4 (IL-4)-dependent mechanism. Protective doses of NKT cells minimally affect Tcon proliferation, but cause significant reductions in interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production by donor Tcons and in skin, spleen, and gastrointestinal pathology. In addition, NKT cells do not impact the graft-versus-tumor (GVT) effect of Tcons against B-cell lymphoma-1 (BCL-1) tumors. These studies elucidate the biologic function of donor-type CD4(+)NKT cells in suppressing GVHD in an allogeneic transplantation setting, demonstrating clinical potential in reducing GVHD in HCT.


PLOS Genetics | 2012

Twist1 Suppresses Senescence Programs and Thereby Accelerates and Maintains Mutant Kras-Induced Lung Tumorigenesis

Phuoc T. Tran; Emelyn H. Shroff; Timothy F. Burns; Saravanan Thiyagarajan; Sandhya Das; Tahera Zabuawala; Joy Chen; Yoon-Jae Cho; Richard Luong; Pablo Tamayo; Tarek Salih; Khaled Aziz; Stacey J. Adam; Silvestre Vicent; Carsten H. Nielsen; Nadia Withofs; Alejandro Sweet-Cordero; Sanjiv S. Gambhir; Charles M. Rudin; Dean W. Felsher

KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

Collaboration


Dive into the Richard Luong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge