Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard M. LoPachin is active.

Publication


Featured researches published by Richard M. LoPachin.


Journal of Neurochemistry | 1990

Effects of axotomy on distribution and concentration of elements in rat sciatic nerve.

Richard M. LoPachin; Vicki R. LoPachin; Albert J. Saubermann

Abstract: X‐ray microprobe analysis was used to determine the effects of axotomy on distribution and concentration (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in frozen, unfixed sections of rat sciatic nerve. Elemental concentrations were measured in axoplasm, mitochondria, and myelin at 8, 16, and 48 h after transection in small‐, medium‐, and large‐diameter fibers. In addition, elemental composition was determined in extraaxonal space (EAS) and Schwann cell cytoplasm. During the initial 16 h following transection, axoplasm of small fibers exhibited a decrease in dry weight concentrations of K and Cl, whereas Na and P increased compared to control values. Similar changes were observed in mitochondria of small axons, except for an early, large increase in Ca content. In contrast, intraaxonal compartments of larger fibers showed increased dry weight levels of K and P, with no changes in Na or Ca concentrations. Both Schwann cell cytoplasm and EAS at 8 and 16 h after injury had significant increases in Na, K, and Cl dry weight concentrations, whereas no changes, other than an increase in Ca, were observed in myelin. Regardless of fiber size, 48 h after transection, axoplasm and mitochondria displayed marked increases in Na, Cl, and Ca concentrations associated with decreased K. Also at 48 h, both Schwann cell cytoplasm and EAS had increased dry weight concentrations of Na, Cl, and K. The results of this study indicate that, in response to nerve transection, elemental content and distribution are altered according to a specific temporal pattern. This sequence of change, which occurs first in small axons, precedes the onset of Wallerian degeneration in transected nerves.


Diabetes | 1990

Distribution of elements and water in peripheral nerve of streptozocin-induced diabetic rats

Joan Lowery; Joseph Eichberg; Albert J. Saubermann; Richard M. LoPachin

Accumulating evidence suggests that alterations in Na, Ca, K, and other biologically relevant elements play a role in the mechanism of cell injury. The pathogenesis of experimental diabetic neuropathy is unknown but might include changes in the distribution of these elements in morphological compartments. In this study, this possibility was examined via electron-probe X-ray microanalysis to measure both concentrations of elements (millimoles of element per kilogram dry or wet weight) and cell water content (percent water) in frozen, unfixed, unstained sections of peripheral nerve from control and streptozocin-induced diabetic rats. Our results indicate that after 20 wk of experimental diabetes, mitochondria and axoplasm from myelinated axons of proximal sciatic nerve displayed diminished K and Cl content, whereas in tibial nerve, the intraaxonal levels of these elements increased. In distal sciatic nerve, mitochondrial and axoplasmic levels of Ca were increased, whereas other elemental alterations were not observed. These regional changes resulted in a reversal of the decreasing proximodistal concentration gradients for K and Cl, which exist in nondiabetic rat sciatic nerve. Our results cannot be explained on the basis of altered water. Highly distinctive changes in elemental distribution observed might be a critical component of the neurotoxic mechanism underlying diabetic neuropathy.


Journal of Toxicology and Environmental Health | 1994

Changes in Na‐K ATPase and protein kinase C activities in peripheral nerve of acrylamide‐treated rats

Ellen Lehning; Richard M. LoPachin; Joy Mathew; Joseph Eichberg

In previous studies on rat peripheral nerve, we showed that acrylamide (ACR) exposure was associated with alterations in axonal and Schwann cell elemental composition that were consistent with decreased Na-K ATPase activity. In the present corollary study, the effects of ACR exposure on Na-K ATPase activity were determined in sciatic and tibial nerves. Subacute ACR treatment (50 mg/kg/d x 10 d, ip) significantly (p < .05) decreased Na-K ATPase activity by 45% in sciatic nerve but did not affect this activity in tibial nerve. Subchronic ACR treatment (2.8 mM in drinking water for 30 d) significantly decreased (p < .05) Na-K ATPase activities by 19% and 35% in sciatic and tibial nerves, respectively. Na-K ATPase activity was not altered in sciatic nerve homogenates exposed to 1.0 mM ACR in vitro. Since protein kinase C (PKC) has been proposed to play a role in the modulation of membrane Na-K ATPase function, PKC activity was also measured in sciatic nerve homogenates and subcellular fractions prepared from control and ACR-treated rats. Regardless of the ACR treatment protocol, PKC activity was elevated in nerve cytosol, but not in a particulate fraction. The results of this study suggest that decreased Na-K ATPase activity is involved in ACR-induced perturbation of axoplasmic and Schwann cell elemental composition in rat peripheral nerves and that loss of activity is not due to direct chemical inhibition of the enzyme. The role of PKC in ACR neurotoxicity requires further elucidation.


Journal of Neurochemistry | 2002

2,5‐Hexanedione Alters Elemental Composition and Water Content of Rat Peripheral Nerve Myelinated Axons

Richard M. LoPachin; Ellen Lehning; Edward C. Stack; Steven J. Hussein; Albert J. Saubermann

Abstract: Effects of 2,5‐hexanedione on elemental concentrations and water content of peripheral nerve myelinated axons were determined using electron probe x‐ray microanalysis. Axons (small, medium, and large) were analyzed in unfixed cryosections from rat tibial and proximal sciatic nerve samples. Animals were intoxicated with 2,5‐hexanedione by two dosing paradigms: intraperitoneal or oral. Regardless of the route of exposure, internodal axoplasm of small and medium axons from both nerve regions exhibited selective, progressive reductions in dry weight K concentrations and water content. When calculated on a wet weight basis, K levels were comparable to or slightly above control values in tibial nerve, whereas in sciatic nerve, small transient decreases in wet weight K were evident. These changes in K and water correlated with the development of axonal atrophy. The wet and dry weight internodal elemental changes reported here do not suggest a metabolic or axolemmal defect, but rather imply a homeostatic response possibly related to the process of axonal atrophy. Giant axonal swellings were primarily associated with oral 2,5‐hexane‐dione intoxication, and corresponding analyses revealed few changes in element or water content compared with control. The absence of significant alterations in these swellings is consistent with mechanical expansion of the axon probably as a function of accumulating neurofilaments.


Brain Research | 1991

Elemental composition and water content of myelinated axons and glial cells in rat central nervous system

Richard M. LoPachin; Carolyn M. Castiglia; Albert J. Saubermann

The distribution of elements (e.g. Na, Cl, K) and water in CNS cells is unknown. Therefore, electron probe X-ray microanalysis (EPMA) was used to measure water content and concentrations (mmol/kg dry or wet weight) of Na, Mg, P, S, Cl, K and Ca in morphological compartments of myelinated axons and glial cells from rat optic nerve and cervical spinal cord white matter. Axons in both CNS regions exhibited similar water content (approximately 90%), and relatively high concentrations (wet and dry weight) of K with low Na and Ca levels. The K content of axons was related to diameter, i.e. small axons in spinal cord and optic nerve had significantly less (25-50%) K than larger diameter axons from the same CNS region. The elemental composition of spinal cord mitochondria was similar to corresponding axoplasm, whereas the water content (75%) of these organelles was substantially lower than that of axoplasm. In glial cell cytoplasm of both CNS areas, P and K (wet and dry weight) were the most abundant elements and water content was approximately 75%. CNS myelin had predominantly high P levels and the lowest water content (33-55%) of any compartment measured. The results of this study demonstrate that each morphological compartment of CNS axons and glia exhibits a characteristic elemental composition and water content which might be related to the structure and function of that neuronal region.


Toxicology and Applied Pharmacology | 1992

Acrylamide disrupts elemental composition and water content of rat tibial nerve: II. Schwann cells and myelin

Richard M. LoPachin; Carolyn M. Castiglia; Albert J. Saubermann

Abstract The effects of subchronic and subacute acrylamide (ACR) intoxication on elemental composition (Na, P, S, Cl, K, Ca, Mg) and water content of Schwann cell body cytoplasm and myelin were assessed in rat tibial nerve. Electron probe X-ray micro-analysis demonstrated that, in control rats, peripheral nerve glia and myelin exhibited highly characteristic distributions of elements and water and that ACR intoxication was associated with disruption of this normal subcellular distribution. When rats were intoxicated with ACR by either the oral (2.8 m m in drinking water for 15, 22, 30, and 60 days) or the intraperitoneal (50 mg/kg/day ×5 and 10 days) route, an exposure-dependent loss of cytoplasmic Na, K, P, Cl, Mg, and water regulation was detected in Schwann cell cytoplasm. Maximum development of elemental deregulation occurred after 30 days of oral ACR exposure and 10 days of ip treatment. The cytoplasmic elements involved and their corresponding quantitative changes were similar regardless of the route of ACR intoxication. Analysis of myelin revealed that both oral and parenteral ACR exposure caused early, persistent increases in dry weight Na, P, and water content. However, Cl dry weight concentrations were increased by oral exposure and decreased by ip ACR injection. Results of this study indicate that ACR intoxication is associated with a significant disturbance of subcellular element and water distribution in tibial nerve Schwann cells and myelin. The pattern of elemental disruption is typical of reversible cell damage and, therefore, Schwann cell injury might play a role in the expression of ACR neurotoxicity.


Brain Research | 1993

Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells

Richard M. LoPachin; Carolyn M. Castiglia; Ellen Lehning; Albert J. Saubermann

Electron probe X-ray microanalysis was used to determine whether experimental acrylamide (ACR) neuropathy involves deregulation of subcellular elements (Na, P, S, Cl, K, Ca and Mg) and water in Schwann cells and small, medium and large diameter myelinated axons of rat sciatic nerve. Results show that in proximal but not distal sciatic nerve, ACR treatment (2.8 mM in drinking water) was associated with an early (15 days of exposure), moderate increase in mean axoplasmic K concentrations (mmol/kg) of medium and small diameter fibers. However, all axons in proximal and distal nerve regions displayed small increases in dry and wet weight contents of axoplasmic Na and P. As ACR treatment progressed (up to 60 days of exposure), Na and P changes persisted whereas proximal axonal K levels returned to control values or below. Alterations in mitochondrial elemental content paralleled those occurring in axoplasm. Schwann cells in distal sciatic nerve exhibited a progressive loss of K, Mg and P and an increase in Na, Cl and Ca. Proximal glia displayed less extensive elemental modifications. Elemental changes observed in axons are not typical of those associated with cell injury and might reflect compensatory or secondary responses. In contrast, distal Schwann cell alterations are consistent with injury, but whether these changes represent primary or secondary mechanisms remains to be determined.


Journal of Neurochemistry | 1993

Ganglioside Treatment Modifies Abnormal Elemental Composition in Peripheral Nerve Myelinated Axons of Experimentally Diabetic Rats

Richard M. LoPachin; Carolyn M. Castiglia; Albert J. Saubermann; Joseph Eichberg

Abstract: Effects of ganglioside administration on elemental composition of peripheral nerve myelinated axons and Schwann cells were determined in streptozotocin‐induced diabetic rats and nondiabetic controls. Diabetic rats (50 days after administration of streptozocin) exhibited a loss of axoplasmic K and Cl concentrations in sciatic nerve relative to control, whereas intraaxonal levels of these elements increased in tibial nerve. These regional changes in diabetic rat constitute a reversal of the decreasing proximodistal gradients for K and Cl concentrations that characterize normal peripheral nerve. Treatment of diabetic rats with a ganglioside mixture for 30 days (initiated 20 days after the administration of streptozocin) returned proximal sciatic nerve axoplasmic K and Cl concentrations to control levels, whereas in tibial axons, concentrations of these elements increased further relative to diabetic levels. Also in the ganglioside/diabetic group, mean axoplasmic Na concentrations were reduced and Ca levels were elevated. Mixed ganglioside treatment of nondiabetic rats significantly increased axoplasmic dry weight concentrations of K and Cl in proximal sciatic and tibial axons. Schwann cells did not exhibit consistent alterations in elemental content regardless of treatment group. Changes in elemental composition evoked by ganglioside treatment of diabetic rats might reflect the ability of these substances to stimulate Na+,K+‐ATPase activity and might be related to the mechanism by which gangliosides improve functional deficits in experimental diabetic neuropathy.


Neurotoxicology | 1994

Acrylamide-induced distal axon degeneration: A proposed mechanism of action

Richard M. LoPachin; Lehning Ej


Toxicology and Applied Pharmacology | 1993

Glial-neuronal interactions : relevance to neurotoxic mechanisms

Richard M. LoPachin; M. Aschner

Collaboration


Dive into the Richard M. LoPachin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy Mathew

Stony Brook University

View shared research outputs
Researchain Logo
Decentralizing Knowledge