Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard M. Nelson is active.

Publication


Featured researches published by Richard M. Nelson.


Journal of Biomolecular Screening | 2007

Three Mechanistically Distinct Kinase Assays Compared: Measurement of Intrinsic ATPase Activity Identified the Most Comprehensive Set of ITK Inhibitors:

Mohammed A. Kashem; Richard M. Nelson; Jeffrey David Yingling; Steven S. Pullen; Anthony S. Prokopowicz; Jessi Wildeson Jones; John P. Wolak; George R. Rogers; Maurice M. Morelock; Roger J. Snow; Carol Ann Homon; Scott Jakes

Numerous assay methods have been developed to identify small-molecule effectors of protein kinases, but no single method can be applied to all isolated kinases. The authors developed a set of 3 high-throughput screening (HTS)–compatible biochemical assays that can measure 3 mechanistically distinct properties of a kinase active site, with the goal that at least 1 of the 3 would be applicable to any kinase selected as a target for drug discovery efforts. Two assays measure catalytically active enzyme: A dissociation-enhanced lanthanide fluoroimmuno assay (DELFIA) uses an antibody to quantitate the generation of phosphorylated substrate; a second assay uses luciferase to measure the consumption of adenosine triphosphate (ATP) during either phosphoryl-transfer to a peptide substrate or to water (intrinsic ATPase activity). A third assay, which is not dependent on a catalytically active enzyme, measures the competition for binding to kinase between an inhibitor and a fluorescent ATP binding site probe. To evaluate the suitability of these assays for drug discovery, the authors compared their ability to identify inhibitors of a nonreceptor protein tyrosine kinase from the Tec family, interleukin-2-inducible T cell kinase (ITK). The 3 assays agreed on 57% of the combined confirmed hit set identified from screening a 10,208-compound library enriched with known kinase inhibitors and molecules that were structurally similar. Among the 3 assays, the one measuring intrinsic ATPase activity produced the largest number of unique hits, the fewest unique misses, and the most comprehensive hit set, missing only 2.7% of the confirmed inhibitors identified by the other 2 assays combined. Based on these data, all 3 assay formats are viable for screening and together provide greater options for assay design depending on the targeted kinase.


Journal of Medicinal Chemistry | 2010

Nonsteroidal Dissociated Glucocorticoid Agonists Containing Azaindoles as Steroid A-Ring Mimetics

Doris Riether; Christian Harcken; Hossein Razavi; Daniel Kuzmich; Thomas A. Gilmore; Jörg Bentzien; Edward J. Pack; Donald Souza; Richard M. Nelson; Alison Kukulka; Tazmeen N. Fadra; Ljiljana Zuvela-Jelaska; Josephine Pelletier; Roger M. Dinallo; Mark Panzenbeck; Carol Torcellini; Gerald H. Nabozny; David S. Thomson

Syntheses and structure-activity relationships (SAR) of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain azaindole moieties as A-ring mimetics and display various degrees of in vitro dissociation between gene transrepression and transactivation. Collagen induced arthritis studies in mouse have demonstrated that in vitro dissociated compounds (R)-16 and (R)-37 have steroid-like anti-inflammatory properties with improved metabolic side effect profiles, such as a reduced increase in body fat and serum insulin levels, compared to steroids.


Bioorganic & Medicinal Chemistry Letters | 2006

Discovery and SAR study of novel dihydroquinoline-containing glucocorticoid receptor agonists

Hidenori Takahashi; Younes Bekkali; Alison Capolino; Thomas A. Gilmore; Susan E. Goldrick; Paul Kaplita; Lisa Liu; Richard M. Nelson; Donna Terenzio; Ji Wang; Ljiljana Zuvela-Jelaska; John R. Proudfoot; Gerald Nabozny; David S. Thomson

We have recently reported the discovery of a novel class of glucocorticoid receptor (GR) antagonists, exemplified by 3, containing a 1,2-dihydroquinoline molecular scaffold. Further SAR studies of these antagonists uncovered chemical modifications conveying agonist functional activity to this series. These agonists exhibit good GR binding affinity and are selective against other nuclear hormone receptors.


Bioorganic & Medicinal Chemistry Letters | 2009

The discovery of thienopyridine analogues as potent IκB kinase β inhibitors. Part II

Jiang-Ping Wu; Roman Wolfgang Fleck; Janice R. Brickwood; Alison Capolino; Katrina Mary Catron; Zhidong Chen; Charles L. Cywin; Jonathan Emeigh; Melissa Foerst; John David Ginn; Matt Hrapchak; Eugene R. Hickey; Ming-Hong Hao; Mohammed A. Kashem; Jun Li; Weimin Liu; Tina Marie Morwick; Richard M. Nelson; Daniel R. Marshall; Leslie Martin; Peter Allen Nemoto; Ian Potocki; Michel Liuzzi; Gregory W. Peet; Erika Scouten; David Stefany; Michael Robert Turner; Steve Weldon; Clare Zimmitti; Denise Spero

An SAR study that identified a series of thienopyridine-based potent IkappaB Kinase beta (IKKbeta) inhibitors is described. With focuses on the structural optimization at C4 and C6 of structure 1 (Fig. 1), the study reveals that small alkyl and certain aromatic groups are preferred at C4, whereas polar groups with proper orientation at C6 efficiently enhance compound potency. The most potent analogues inhibit IKKbeta with IC50s as low as 40 nM, suppress LPS-induced TNF-alpha production in vitro and in vivo, display good kinase selectivity profiles, and are active in a HeLa cell NF-kappaB reporter gene assay, demonstrating that they directly interfere with the NF-kappaB signaling pathway.


Bioorganic & Medicinal Chemistry Letters | 2011

Non-steroidal dissociated glucocorticoid agonists: indoles as A-ring mimetics and function-regulating pharmacophores

Raj Betageri; Thomas A. Gilmore; Daniel Kuzmich; Thomas M. Kirrane; Jörg Bentzien; Dieter Wiedenmayer; Younes Bekkali; John R. Regan; Angela Berry; Bachir Latli; Alison Kukulka; Tazmeen N. Fadra; Richard M. Nelson; Susan E. Goldrick; Ljiljana Zuvela-Jelaska; Don Souza; Josephine Pelletier; Roger M. Dinallo; Mark Panzenbeck; Carol Torcellini; Heewon Lee; Edward Pack; Christian Harcken; Gerald Nabozny; David S. Thomson

We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone.


Journal of Laboratory Automation | 2006

Assay Optimization: A Statistical Design of Experiments Approach

Maneesha Altekar; Carol Ann Homon; Mohammed A. Kashem; Steven W. Mason; Richard M. Nelson; Lori Patnaude; Jeffrey D. Yingling; Paul B. Taylor

With the transition from manual to robotic HTS in the last several years, assay optimization has become a significant bottleneck. Recent advances in robotic liquid handling have made it feasible to reduce assay optimization timelines with the application of statistically designed experiments. When implemented, they can efficiently optimize assays by rapidly identifying significant factors, complex interactions, and nonlinear responses. With the use of an integrated approach called automated assay optimization developed in collaboration with Beckman Coulter (Fullerton, CA), the process of conducting these experiments has been greatly facilitated. This approach imports an experimental design from a commercial statistical package and converts it into robotic methods. The data from these experiments are fed back into the statistical package and analyzed, resulting in empirical models for determining optimum assay conditions. The optimized assays are then progressed into HTS. This tutorial will focus on the use of statistically designed experiments in assay optimization.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of a potent and dissociated non-steroidal glucocorticoid receptor agonist containing an alkyl carbinol pharmacophore.

Hossein Razavi; Doris Riether; Christian Harcken; Jörg Bentzien; Roger M. Dinallo; Donald Souza; Richard M. Nelson; Alison Kukulka; Tazmeen Fadra-Khan; Edward J. Pack; Ljiljana Zuvela-Jelaska; Josephine Pelletier; Mark Panzenbeck; Carol Torcellini; John R. Proudfoot; Gerald Nabozny; David S. Thomson

Synthesis and structure-activity relationship (SAR) of a series of alkyl and cycloalkyl containing non-steroidal dissociated glucocorticoid receptor (GR) agonists is reported. This series of compounds was identified as part of an effort to replace the CF3 group in a scaffold represented by 1a. The study culminated in the identification of compound 14, a t-butyl containing derivative, which has shown potent activity for GR, selectivity against the progesterone receptor (PR) and the mineralocorticoid receptor (MR), in vitro anti-inflammatory activity in an IL-6 transrepression assay, and dissociation in a MMTV transactivation counter-screen. In a collagen-induced arthritis mouse model, 14 displayed prednisolone-like efficacy, and lower impact on body fat and free fatty acids than prednisolone at an equivalent anti-inflammatory dose.


Bioorganic & Medicinal Chemistry Letters | 2013

Function-regulating pharmacophores in a sulfonamide class of glucocorticoid receptor agonists

Daniel Kuzmich; Jörg Bentzien; Raj Betageri; Darren Disalvo; Tazmeen Fadra-Khan; Christian Harcken; Alison Kukulka; Gerald Nabozny; Richard M. Nelson; Edward Pack; Donald Souza; David S. Thomson

A class of α-methyltryptamine sulfonamide glucocorticoid receptor (GR) modulators was optimized for agonist activity. The design of ligands was aided by molecular modeling, and key function-regulating pharmacophoric points were identified that are critical in achieving the desired agonist effect in cell based assays. Compound 27 was profiled in vitro and in vivo in models of inflammation. Analogs could be rapidly prepared in a parallel approach from aziridine building blocks.


Bioorganic & Medicinal Chemistry Letters | 2013

Substituted phenyl as a steroid A-ring mimetic: Providing agonist activity to a class of arylsulfonamide nonsteroidal glucocorticoid ligands

Darren Disalvo; Daniel Kuzmich; Jörg Bentzien; John R. Regan; Alison Kukulka; Tazmeen Fadra-Khan; Richard M. Nelson; Christian Harcken; David S. Thomson; Gerald Nabozny

A class of arylsulfonamide glucocorticoid receptor agonists that contains a substituted phenyl group as a steroid A-ring mimetic is reported. The structural design and SAR that provide the functional switching of a GR antagonist to an agonist is described. A combination of specific hydrogen bonding and lipophilic elements on the A-ring moiety is required to achieve potent GR agonist activity. This study culminated in the identification of compound 23 as a potent GR agonist with selectivity over the PR and MR nuclear hormone receptors.


Journal of Medicinal Chemistry | 2003

Structure−Activity Relationships of the p38α MAP Kinase Inhibitor 1-(5-tert-Butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-[4-(2-morpholin-4-yl-ethoxy)naph- thalen-1-yl]urea (BIRB 796)

John M. Regan; Alison Capolino; Pier F. Cirillo; Thomas A. Gilmore; Anne G. Graham; Eugene R. Hickey; Rachel R. Kroe; Jeffrey B. Madwed; Monica Helen Moriak; Richard M. Nelson; Christopher Pargellis; Alan David Swinamer; Carol Torcellini; Michele Tsang; Neil Moss

Collaboration


Dive into the Richard M. Nelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge