Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard M. Scearce is active.

Publication


Featured researches published by Richard M. Scearce.


Nature | 2013

Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

Hua-Xin Liao; Rebecca M. Lynch; Tongqing Zhou; Feng Gao; S. Munir Alam; Scott D. Boyd; Andrew Fire; Krishna M. Roskin; Chaim A. Schramm; Z. F. Zhang; Jiang Zhu; Lawrence Shapiro; Nisc Comparative Sequencing Program; James C. Mullikin; S. Gnanakaran; Peter Hraber; Kevin Wiehe; Garnett Kelsoe; Guang Yang; Shi-Mao Xia; David C. Montefiori; Robert Parks; Krissey E. Lloyd; Richard M. Scearce; Kelly A. Soderberg; Myron S. Cohen; Gift Kamanga; Mark K. Louder; Lillian Tran; Yue Chen

Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.


Journal of Immunology | 2007

The Role of Antibody Polyspecificity and Lipid Reactivity in Binding of Broadly Neutralizing Anti-HIV-1 Envelope Human Monoclonal Antibodies 2F5 and 4E10 to Glycoprotein 41 Membrane Proximal Envelope Epitopes

S. Munir Alam; Mildred McAdams; David Boren; Michael Rak; Richard M. Scearce; Feng Gao; Zenaido T. Camacho; Daniel T. Gewirth; Garnett Kelsoe; Pojen Chen; Barton F. Haynes

Two neutralizing human mAbs, 2F5 and 4E10, that react with the HIV-1 envelope gp41 membrane proximal region are also polyspecific autoantibodies that bind to anionic phospholipids. To determine the autoantibody nature of these Abs, we have compared their reactivities with human anti-cardiolipin mAbs derived from a primary antiphospholipid syndrome patient. To define the role of lipid polyreactivity in binding of 2F5 and 4E10 mAbs to HIV-1 envelope membrane proximal epitopes, we determined the kinetics of binding of mAbs 2F5 and 4E10 to their nominal gp41 epitopes vs liposome-gp41 peptide conjugates. Both anti-HIV-1 mAbs 2F5 and 4E10 bound to cardiolipin with Kd values similar to those of autoimmune anti-cardiolipin Abs, IS4 and IS6. Binding kinetics studies revealed that mAb 2F5 and 4E10 binding to their respective gp41 peptide-lipid conjugates could best be defined by a two-step (encounter-docking) conformational change model. In contrast, binding of 2F5 and 4E10 mAbs to linear peptide epitopes followed a simple Langmuir model. A mouse mAb, 13H11, that cross-blocks mAb 2F5 binding to the gp41 epitope did not cross-react with lipids nor did it neutralize HIV-1 viruses. Taken together, these data demonstrate the similarity of 2F5 and 4E10 mAbs to known anti-cardiolipin Abs and support the model that mAb 2F5 and 4E10 binding to HIV-1 involves both viral lipid membrane and gp41 membrane proximal epitopes.


Journal of Virology | 2005

Antigenicity and Immunogenicity of a Synthetic Human Immunodeficiency Virus Type 1 Group M Consensus Envelope Glycoprotein

Feng Gao; Eric A. Weaver; Zhongjing Lu; Yingying Li; Hua-Xin Liao; Ben-Jiang Ma; S. Munir Alam; Richard M. Scearce; Laura L. Sutherland; Jae Sung Yu; Julie M. Decker; George M. Shaw; David C. Montefiori; Bette T. Korber; Beatrice H. Hahn; Barton F. Haynes

ABSTRACT Genetic variation of human immunodeficiency virus (HIV-1) represents a major obstacle for AIDS vaccine development. To decrease the genetic distances between candidate immunogens and field virus strains, we have designed and synthesized an artificial group M consensus env gene (CON6 gene) to be equidistant from contemporary HIV-1 subtypes and recombinants. This novel envelope gene expresses a glycoprotein that binds soluble CD4, utilizes CCR5 but not CXCR4 as a coreceptor, and mediates HIV-1 entry. Key linear, conformational, and glycan-dependent monoclonal antibody epitopes are preserved in CON6, and the glycoprotein is recognized equally well by sera from individuals infected with different HIV-1 subtypes. When used as a DNA vaccine followed by a recombinant vaccinia virus boost in BALB/c mice, CON6 env gp120 and gp140CF elicited gamma interferon-producing T-cell responses that recognized epitopes within overlapping peptide pools from three HIV-1 Env proteins, CON6, MN (subtype B), and Chn19 (subtype C). Sera from guinea pigs immunized with recombinant CON6 Env gp120 and gp140CF glycoproteins weakly neutralized selected HIV-1 primary isolates. Thus, the computer-generated “consensus” env genes are capable of expressing envelope glycoproteins that retain the structural, functional, and immunogenic properties of wild-type HIV-1 envelopes.


Nature | 2017

Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination

Norbert Pardi; Michael J. Hogan; Rebecca S. Pelc; Hiromi Muramatsu; Hanne Andersen; Christina R. DeMaso; Kimberly A. Dowd; Laura L. Sutherland; Richard M. Scearce; Robert Parks; Wendeline Wagner; Alex Granados; Jack Greenhouse; Michelle Walker; Elinor Willis; Jae-Sung Yu; Charles E. McGee; Gregory D. Sempowski; Barbara L. Mui; Ying K. Tam; Yan-Jang Huang; Dana L. Vanlandingham; Veronica M. Holmes; Harikrishnan Balachandran; Sujata Sahu; Michelle A. Lifton; Stephen Higgs; Scott E. Hensley; Thomas D. Madden; Michael J. Hope

Zika virus (ZIKV) has recently emerged as a pandemic associated with severe neuropathology in newborns and adults. There are no ZIKV-specific treatments or preventatives. Therefore, the development of a safe and effective vaccine is a high priority. Messenger RNA (mRNA) has emerged as a versatile and highly effective platform to deliver vaccine antigens and therapeutic proteins. Here we demonstrate that a single low-dose intradermal immunization with lipid-nanoparticle-encapsulated nucleoside-modified mRNA (mRNA–LNP) encoding the pre-membrane and envelope glycoproteins of a strain from the ZIKV outbreak in 2013 elicited potent and durable neutralizing antibody responses in mice and non-human primates. Immunization with 30 μg of nucleoside-modified ZIKV mRNA–LNP protected mice against ZIKV challenges at 2 weeks or 5 months after vaccination, and a single dose of 50 μg was sufficient to protect non-human primates against a challenge at 5 weeks after vaccination. These data demonstrate that nucleoside-modified mRNA–LNP elicits rapid and durable protective immunity and therefore represents a new and promising vaccine candidate for the global fight against ZIKV.


Journal of Virology | 2008

Human Immunodeficiency Virus Type 1 gp41 Antibodies That Mask Membrane Proximal Region Epitopes: Antibody Binding Kinetics, Induction, and Potential for Regulation in Acute Infection

S. Munir Alam; Richard M. Scearce; Robert Parks; Kelly Plonk; Steven G. Plonk; Laura L. Sutherland; Miroslaw K. Gorny; Susan Zolla-Pazner; Stacie Vanleeuwen; M. Anthony Moody; Shi-Mao Xia; David C. Montefiori; Georgia D. Tomaras; Kent J. Weinhold; Salim Safurdeen. Abdool Karim; Charles B. Hicks; Hua-Xin Liao; James Robinson; George M. Shaw; Barton F. Haynes

ABSTRACT Two human monoclonal antibodies (MAbs) (2F5 and 4E10) against the human immunodeficiency virus type 1 (HIV-1) envelope g41 cluster II membrane proximal external region (MPER) broadly neutralize HIV-1 primary isolates. However, these antibody specificities are rare, are not induced by Env immunization or HIV-1 infection, and are polyspecific and also react with lipids such as cardiolipin or phosphatidylserine. To probe MPER anti-gp41 antibodies that are produced in HIV-1 infection, we have made two novel murine MAbs, 5A9 and 13H11, against HIV-1 gp41 envelope that partially cross-blocked 2F5 MAb binding to Env but did not neutralize HIV-1 primary isolates or bind host lipids. Competitive inhibition assays using labeled 13H11 MAb and HIV-1-positive patient plasma samples demonstrated that cluster II 13H11-blocking plasma antibodies were made in 83% of chronically HIV-1 infected patients and were acquired between 5 to 10 weeks after acute HIV-1 infection. Both the mouse 13H11 MAb and the three prototypic cluster II human MAbs (98-6, 126-6, and 167-D) blocked 2F5 binding to gp41 epitopes to variable degrees; the combination of 98-6 and 13H11 completely blocked 2F5 binding. These data provide support for the hypothesis that in some patients, B cells make nonneutralizing cluster II antibodies that may mask or otherwise down-modulate B-cell responses to immunogenic regions of gp41 that could be recognized by B cells capable of producing antibodies like 2F5.


PLOS Pathogens | 2011

Envelope Deglycosylation Enhances Antigenicity of HIV-1 gp41 Epitopes for Both Broad Neutralizing Antibodies and Their Unmutated Ancestor Antibodies

Ben-Jiang Ma; S. Munir Alam; Eden P. Go; Xiaozhi Lu; Heather Desaire; Georgia D. Tomaras; Cindy M. Bowman; Laura L. Sutherland; Richard M. Scearce; Sampa Santra; Norman L. Letvin; Thomas B. Kepler; Hua-Xin Liao; Barton F. Haynes

The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.


Infection and Immunity | 2007

In Vitro and In Vivo Characterization of Anthrax Anti-Protective Antigen and Anti-Lethal Factor Monoclonal Antibodies after Passive Transfer in a Mouse Lethal Toxin Challenge Model To Define Correlates of Immunity

Herman F. Staats; S. Munir Alam; Richard M. Scearce; Shaun M. Kirwan; Julia Xianzhi Zhang; William M. Gwinn; Barton F. Haynes

ABSTRACT Passive transfer of antibody may be useful for preexposure prophylaxis against biological agents used as weapons of terror, such as Bacillus anthracis. Studies were performed to evaluate the ability of anthrax antiprotective antigen (anti-PA) and antilethal factor (anti-LF) neutralizing monoclonal antibodies (mAbs) to protect against an anthrax lethal toxin (LeTx) challenge in a mouse model and to identify correlates of immunity to LeTx challenge. Despite having similar affinities for their respective antigens, anti-PA (3F11) and anti-LF (9A11), passive transfer of up to 1.5 mg of anti-PA 3F11 mAb did not provide significant protection when transferred to mice 24 h before LeTx challenge, while passive transfer of as low as 0.375 mg of anti-LF 9A11 did provide significant protection. Serum collected 24 h after passive transfer had LeTx-neutralizing activity when tested using a standard LeTx neutralization assay, but neutralization titers measured using this assay did not correlate with protection against LeTx challenge. However, measurement of LeTx-neutralizing serum responses with an LeTx neutralization assay in vitro employing the addition of LeTx to J774A.1 cells 15 min before the addition of the serum did result in neutralization titers that correlated with protection against LeTx challenge. Our results demonstrate that only the LeTx neutralization titers measured utilizing the addition of LeTx to J774A.1 cells 15 min before the addition of sample correlated with protection in vivo. Thus, this LeTx neutralization assay may be a more biologically relevant neutralization assay to predict the in vivo protective capacity of LeTx-neutralizing antibodies.


Journal of Immunology | 2013

Induction of HIV-1 Broad Neutralizing Antibodies in 2F5 Knock-in Mice: Selection against Membrane Proximal External Region–Associated Autoreactivity Limits T-Dependent Responses

Laurent Verkoczy; Yao Chen; Jinsong Zhang; Hilary Bouton-Verville; Amanda Newman; Bradley Lockwood; Richard M. Scearce; David C. Montefiori; S. Moses Dennison; Shi-Mao Xia; Kwan-Ki Hwang; Hua-Xin Liao; S. Munir Alam; Barton F. Haynes

A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs). Using a knock-in (KI) model of 2F5, a human HIV-1 gp41 membrane proximal external region (MPER)–specific BnAb, we previously demonstrated that a key obstacle to BnAb induction is clonal deletion of BnAb-expressing B cells. In this study of this model, we provide a proof-of-principle that robust serum neutralizing IgG responses can be induced from pre-existing, residual, self-reactive BnAb-expressing B cells in vivo using a structurally compatible gp41 MPER immunogen. Furthermore, in CD40L-deficient 2F5 KI mice, we demonstrate that these BnAb responses are elicited via a type II T-independent pathway, coinciding with expansion and activation of transitional splenic B cells specific for 2F5s nominal gp41 MPER-binding epitope (containing the 2F5 neutralization domain ELDKWA). In contrast, constitutive production of nonneutralizing serum IgGs in 2F5 KI mice is T dependent and originates from a subset of splenic mature B2 cells that have lost their ability to bind 2F5s gp41 MPER epitope. These results suggest that residual, mature B cells expressing autoreactive BnAbs, like 2F5 as BCR, may be limited in their ability to participate in T-dependent responses by purifying selection that selectively eliminates reactivity for neutralization epitope-containing/mimicked host Ags.


Journal of Virology | 2013

Antigenicity and immunogenicity of transmitted/founder, consensus, and chronic envelope glycoproteins of human immunodeficiency virus type 1

Hua-Xin Liao; Chun-Yen Tsao; S. Munir Alam; Mark Muldoon; Nathan Vandergrift; Ben-Jiang Ma; Xiaozhi Lu; Laura L. Sutherland; Richard M. Scearce; Cindy M. Bowman; Robert Parks; Haiyan Chen; Julie Blinn; Alan S. Lapedes; Sydeaka Watson; Shi-Mao Xia; Andrew Foulger; Beatrice H. Hahn; George M. Shaw; R. Swanstrom; David C. Montefiori; Feng Gao; Barton F. Haynes; Bette T. Korber

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) vaccine development requires selection of appropriate envelope (Env) immunogens. Twenty HIV-1 Env glycoproteins were examined for their ability to bind human anti-HIV-1 monoclonal antibodies (MAbs) and then used as immunogens in guinea pigs to identify promising immunogens. These included five Envs derived from chronically infected individuals, each representing one of five common clades and eight consensus Envs based on these five clades, as well as the consensus of the entire HIV-1 M group, and seven transmitted/founder (T/F) Envs from clades B and C. Sera from immunized guinea pigs were tested for neutralizing activity using 36 HIV-1 Env-pseudotyped viruses. All Envs bound to CD4 binding site, membrane-proximal, and V1/V2 MAbs with similar apparent affinities, although the T/F Envs bound with higher affinity to the MAb 17b, a CCR5 coreceptor binding site antibody. However, the various Envs differed in their ability to induce neutralizing antibodies. Consensus Envs elicited the most potent responses, but neutralized only a subset of viruses, including mostly easy-to-neutralize tier 1 and some more-difficult-to-neutralize tier 2 viruses. T/F Envs elicited fewer potent neutralizing antibodies but exhibited greater breadth than chronic or consensus Envs. Finally, chronic Envs elicited the lowest level and most limited breadth of neutralizing antibodies overall. Thus, each group of Env immunogens elicited a different antibody response profile. The complementary benefits of consensus and T/F Env immunogens raise the possibility that vaccines utilizing a combination of consensus and T/F Envs may be able to induce neutralizing responses with greater breadth and potency than single Env immunogens.


Vox Sanguinis | 1987

Human Erythrocyte Antigens

Marilyn J. Telen; Richard M. Scearce; Barton F. Haynes

Abstract. Human erythrocyte membrane proteins express antigens which serve as markers for erythroid differentiation as well as targets for human blood group alloantibodies. We have produced and characterized a new panel of five monoclonal antibodies to erythrocyte membrane proteins. Three monoclonal antibodies (E3, E4, E5) were specific for erythrocyte glycophorins. One antibody (E3) identified the sialoglycoprotein α and β homologous regions proximal to the plasma membrane, a second antibody (E4) was specific for sialoglycoprotein α, while a third (E5) was a sialogylcoprotein‐β‐specific antibody. Two antibodies (E6 and TE10) to the 65,000‐dalton chymotrypsin cleavage product of band 3 were also produced. These antibodies constitute a new panel of probes for investigation of normal erythroid differentiation, erythroleukemia, and the expression of normal and anomalous blood group antigens.

Collaboration


Dive into the Richard M. Scearce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua-Xin Liao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sampa Santra

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge