Richard M. Twyman
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard M. Twyman.
Nature Biotechnology | 2004
Stephan Hellwig; Jürgen Drossard; Richard M. Twyman; Rainer Fischer
The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems.
Plant Biotechnology Journal | 2011
Georgina Sanahuja; Raviraj Banakar; Richard M. Twyman; Teresa Capell; Paul Christou
Bacillus thuringiensis (Bt) is a soil bacterium that forms spores during the stationary phase of its growth cycle. The spores contain crystals, predominantly comprising one or more Cry and/or Cyt proteins (also known as δ-endotoxins) that have potent and specific insecticidal activity. Different strains of Bt produce different types of toxin, each of which affects a narrow taxonomic group of insects. Therefore, Bt toxins have been used as topical pesticides to protect crops, and more recently the proteins have been expressed in transgenic plants to confer inherent pest resistance. Bt transgenic crops have been overwhelmingly successful and beneficial, leading to higher yields and reducing the use of chemical pesticides and fossil fuels. However, their deployment has attracted some criticism particularly with regard to the potential evolution of pest-resistant insect strains. Here, we review recent progress in the development of Bt technology and the countermeasures that have been introduced to prevent the evolution of resistant insect populations.
EMBO Reports | 2005
Julian K.-C. Ma; Eugenia Barros; Ralph Bock; Paul Christou; Philip J. Dale; Philip J. Dix; Rainer Fischer; Judith A. Irwin; Richard Mahoney; Mario Pezzotti; Stefan Schillberg; Penny Sparrow; Eva Stoger; Richard M. Twyman
The European Union Framework 6 Pharma–Planta Consortium The first recombinant plant‐derived pharmaceutical protein (PDP) was human serum albumin, initially produced in 1990 in transgenic tobacco and potato plants (Sijmons et al , 1990). Fifteen years on, the first technical proteins produced in transgenic plants are on the market, and proof of concept has been established for the production of many therapeutic proteins, including antibodies, blood products, cytokines, growth factors, hormones, recombinant enzymes and human and veterinary vaccines (Twyman et al , 2005). Furthermore, several PDP products for the treatment of human diseases are approaching commercialization (Table 1), including recombinant gastric lipase for the treatment of cystic fibrosis, and antibodies for the prevention of dental caries and the treatment of non‐Hodgkins lymphoma (Ma et al , 2003). There are also several veterinary vaccines in the pipeline; Dow AgroSciences (Indianapolis, IN, USA) announced recently their intention to produce plant‐based vaccines for the animal health industry. View this table: Table 1. Plant‐derived pharmaceutical proteins that are closest to commercialization for the treatment of human diseases As molecular farming has come of age, there have been technological developments on many levels, including transformation methods, control of gene expression, protein targeting and accumulation, the use of different crops as production platforms (Twyman et al , 2003), and modifications to alter the structural and functional properties of the product. One of the most important driving factors has been yield improvement, as product yield has a significant impact on economic feasibility. Strategies to improve the recombinant protein yield in plants include the development of novel promoters, the improvement of protein stability and accumulation through the use of signals that target the protein to intracellular compartments, and the improvement of downstream processing technologies (Menkhaus et al , 2004). Attention is now shifting from basic research towards commercial exploitation, and molecular farming is reaching the stage at which it could challenge established production technologies that use bacteria, yeast and cultured mammalian cells. …
Plant Molecular Biology | 2003
Ajay Kohli; Richard M. Twyman; Rita Abranches; Eva Wegel; Eva Stoger; Paul Christou
It has been appreciated for many years that the structure of a transgene locus can have a major influence on the level and stability of transgene expression. Until recently, however, it has been common practice to discard plant lines with poor or unstable expression levels in favor of those with practical uses. In the last few years, an increasing number of experiments have been carried out with the primary aim of characterizing transgene loci and studying the fundamental links between locus structure and expression. Cereals have been at the forefront of this research because molecular, genetic and cytogenetic analysis can be carried out in parallel to examine transgene loci in detail. This review discusses what is known about the structure and organization of transgene loci in cereals, both at the molecular and cytogenetic levels. In the latter case, important links are beginning to be revealed between higher order locus organization, nuclear architecture, chromatin structure and transgene expression.
Expert Opinion on Emerging Drugs | 2005
Richard M. Twyman; Stefan Schillberg; Rainer Fischer
Many of our ‘small-molecule-drugs’ are natural products from plants, or are synthetic compounds based on molecules found naturally in plants. However, the vast majority of the protein therapeutics (or biopharmaceuticals) we use are from animal or human sources, and are produced commercially in microbial or mammalian bioreactor systems. Over the last few years, it has become clear that plants have great potential for the production of human proteins and other protein-based therapeutic entities. Plants offer the prospect of inexpensive biopharmaceutical production without sacrificing product quality or safety, and following the success of several plant-derived technical proteins, the first therapeutic products are now approaching the market. In this review, the different plant-based production systems are discussed and the merits of transgenic plants are evaluated compared with other platforms. A detailed discussion is provided of the development issues that remain to be addressed before plants become an acceptable mainstream production technology. The many different proteins that have already been produced using plants are described, and a sketch of the current market and the activities of the key players is provided. Despite the currently unclear regulatory framework and general industry inertia, the benefits of plant-derived pharmaceuticals are now bringing the prospect of inexpensive veterinary and human medicines closer than ever before.
Biotechnology Advances | 2012
Rainer Fischer; Stefan Schillberg; Stephan Hellwig; Richard M. Twyman; Juergen Drossard
Recombinant proteins can be produced in a diverse array of plant-based systems, ranging from whole plants growing in the soil to plant suspension cells growing in a fully-defined synthetic medium in a bioreactor. When the recombinant proteins are intended for medical use (plant-derived pharmaceutical proteins, PDPs) they fall under the same regulatory guidelines for manufacturing that cover drugs from all other sources, and when such proteins enter clinical development this includes the requirement for production according to good manufacturing practice (GMP). In principle, the well-characterized GMP regulations that apply to pharmaceutical proteins produced in bacteria and mammalian cells are directly transferrable to plants. In practice, the cell-specific terminology and the requirement for a contained, sterile environment mean that only plant cells in a bioreactor fully meet the original GMP criteria. Significant changes are required to adapt these regulations for proteins produced in whole-plant systems and it is only recently that the first GMP-compliant production processes using plants have been delivered.
Archive | 2002
Eva Stoger; Markus Sack; Yolande Perrin; Carmen Vaquero; Esperanza Torres; Richard M. Twyman; Paul Christou; Rainer Fischer
The potential of plant cells to produce functional recombinantantibodies has been demonstrated in a number of different plant systems. Wepresent a comparative study of a well-defined target protein, a single chain Fvantibody, in different transgenic crop species and cultured tissues. The effectof different regulatory elements and signals for subcellular targeting areconsidered. Practical considerations for the choice of a particular cropsystem,such as yield, storage, distribution and containment properties are discussed.
Transgenic Research | 2007
P. A. C. Sparrow; Judith A. Irwin; Phil J. Dale; Richard M. Twyman; Julian K. C. Ma
Significant advances over the last few years have seen plant-made pharmaceuticals (PMPs) move from the exploratory research phase towards clinical trials, with the first commercial products for human use expected to reach the market by 2009. Europe has yet to witness the commercial application of PMP technology, although at least one product has begun phase II clinical trials with others following close behind. These emerging products are set to challenge the complex and overlapping regulations that currently govern GM plants and ‘conventional’ pharmaceutical production. The areas of responsibility are being mapped out between the different EU regulatory agencies, with specific guidelines currently being drawn up for the regulation of PMPs. This article discusses issues surrounding the development of robust risk-assessment and risk-management practices based on health and environmental impact, while working with EU regulatory authorities to ensure appropriate regulatory oversight.
Nutrition Research Reviews | 2004
Paul Christou; Richard M. Twyman
Food insecurity is one of the most important social issues faced today, with 840 million individuals enduring chronic hunger and three billion individuals suffering from nutrient deficiencies. Most of these individuals are poverty stricken and live in developing countries. Strategies to address food insecurity must aim to increase agricultural productivity in the developing world in order to tackle poverty, and must provide long-term improvements in crop yields to keep up with demand as the worlds population grows. Genetically enhanced plants provide one route to sustainable higher yields, either by increasing the intrinsic yield capability of crop plants or by protecting them from biotic and abiotic constraints. The present paper discusses a range of transgenic approaches that could increase agricultural productivity if applied on a large scale, including the introduction of genes that confer resistance to pests and diseases, or tolerance of harsh environments, and genes that help to lift the intrinsic yield capacity by increasing metabolic flux towards storage carbohydrates, proteins and oils. The paper also explores how the nutritional value of plants can be improved by genetic engineering. Transgenic plants, as a component of integrated strategies to relieve poverty and deliver sustainable agriculture to subsistence farmers in developing countries, could have a significant impact on food security now and in the future.
Plant Molecular Biology | 2010
Ariadna Peremarti; Richard M. Twyman; Sonia Gómez-Galera; Shaista Naqvi; Gemma Farré; Maite Sabalza; Bruna Miralpeix; Svetlana Dashevskaya; Dawei Yuan; Koreen Ramessar; Paul Christou; Changfu Zhu; Ludovic Bassie; Teresa Capell
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.