Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Massey is active.

Publication


Featured researches published by Richard Massey.


Astrophysical Journal Supplement Series | 2007

The First Release COSMOS Optical and Near-IR Data and Catalog*

P. Capak; H. Aussel; Masaru Ajiki; H. J. McCracken; B. Mobasher; N. Z. Scoville; Patrick Lynn Shopbell; Y. Taniguchi; D. Thompson; S. Tribiano; S. S. Sasaki; A. W. Blain; M. Brusa; C. L. Carilli; A. Comastri; C. M. Carollo; P. Cassata; James W. Colbert; Richard S. Ellis; M. Elvis; Mauro Giavalisco; W. Green; L. Guzzo; G. Hasinger; O. Ilbert; C. D. Impey; Knud Jahnke; J. Kartaltepe; Jean-Paul Kneib; Jin Koda

We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3 and 2.4 μm. These include data taken on the Subaru 8.3 m telescope, the KPNO and CTIO 4 m telescopes, and the CFHT 3.6 m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard-star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving.


Monthly Notices of the Royal Astronomical Society | 2006

The Shear Testing Programme ¿ I. Weak lensing analysis of simulated ground-based observations

Catherine Heymans; Ludovic Van Waerbeke; David J. Bacon; Joel Bergé; G. M. Bernstein; Emmanuel Bertin; Sarah Bridle; Michael L. Brown; Douglas Clowe; Haakon Dahle; Thomas Erben; Meghan E. Gray; Marco Hetterscheidt; Henk Hoekstra; P. Hudelot; M. Jarvis; Konrad Kuijken; V. E. Margoniner; Richard Massey; Y. Mellier; Reiko Nakajima; Alexandre Refregier; Jason Rhodes; Tim Schrabback; David Michael Wittman

The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of all weak lensing measurements in preparation for the next generation of wide-field surveys. In this first STEP paper, we present the results of a blind analysis of simulated ground-based observations of relatively simple galaxy morphologies. The most successful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that have been used to constrain cosmology, we find weak lensing shear measured to an accuracy that is within the statistical errors of current weak lensing analyses, with shear measurements accurate to better than 7 per cent. The dominant source of measurement error is shown to arise from calibration uncertainties where the measured shear is over or underestimated by a constant multiplicative factor. This is of concern as calibration errors cannot be detected through standard diagnostic tests. The measured calibration errors appear to result from stellar contamination, false object detection, the shear measurement method itself, selection bias and/or the use of biased weights. Additive systematics (false detections of shear) resulting from residual point-spread function anisotropy are, in most cases, reduced to below an equivalent shear of 0.001, an order of magnitude below cosmic shear distortions on the scales probed by current surveys. Our results provide a snapshot view of the accuracy of current ground-based weak lensing methods and a benchmark upon which we can improve. To this end we provide descriptions of each method tested and include details of the eight different implementations of the commonly used Kaiser, Squires & Broadhurst method (KSB+) to aid the improvement of future KSB+ analyses.


The Astrophysical Journal | 2012

New constraints on the evolution of the stellar-to-dark matter connection: a combined analysis of galaxy-galaxy lensing, clustering, and stellar mass functions from z=0.2 to z=1

Alexie Leauthaud; Jeremy L. Tinker; Kevin Bundy; Peter Behroozi; Richard Massey; Jason Rhodes; Matthew R. George; Jean-Paul Kneib; Andrew J. Benson; Risa H. Wechsler; Michael T. Busha; P. Capak; Marina Cortês; O. Ilbert; Anton M. Koekemoer; Oliver Le Fevre; S. J. Lilly; H. J. McCracken; M. Salvato; Tim Schrabback; N. Z. Scoville; Tristan L. Smith; James E. Taylor

Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as M-h proportional to M-*(0.46) and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M-* \textgreater 5 x 10(10)M(circle dot) and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh/M*, varies from low to high masses, reaching a minimum of Mh/M-* similar to 27 at M-* = 4.5 x 10(10) M-circle dot and M-h = 1.2 x 10(12) M-circle dot. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been themost efficient. We describe the SHMR at this minimum in terms of the “ pivot stellarmass,” M-*(piv) the “pivot halo mass,” M-h(piv), and the “pivot ratio,” (M-h/M-*)(piv). Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M-h(piv) and M-*(piv) The pivot stellar mass decreases from M-*(piv) = 5.75 +/- 0.13x10(10) M-circle dot at z = 0.88 to M-*(piv) = 3.55 +/- 0.17x10(10) M-circle dot at z = 0.37. Intriguingly, however, the corresponding evolution of M-h(piv) leaves the pivot ratio constant with redshift at (M-h/M-*)(piv) similar to 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on M-h/M-* and not simply onMh, as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and active galactic nucleus feedback.


Astrophysical Journal Supplement Series | 2007

The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing

Anton M. Koekemoer; H. Aussel; Daniela Calzetti; P. Capak; Mauro Giavalisco; Jean-Paul Kneib; A. Leauthaud; O. Le Fèvre; H. J. McCracken; Richard Massey; B. Mobasher; Jason Rhodes; N. Z. Scoville; Patrick Lynn Shopbell

We describe the details of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) observations of the COSMOS field, including the data calibration and processing procedures. We obtained a total of 583 orbits of HST ACS/WFC imaging in the F814W filter, covering a field that is 1.64 deg^2 in area, the largest contiguous field ever imaged with HST. The median exposure depth across the field is 2028 s (one HST orbit), achieving a limiting point-source depth AB(F814W) = 27.2 (5 σ). We also present details of the astrometric image registration and distortion removal and image combination using MultiDrizzle, motivating the choice of our final pixel scale (30 mas pixel^(-1)), based on the requirements for weak-lensing science. The final set of images are publicly available through the archive sites at IPAC and STScI, along with further documentation on how they were produced.


Monthly Notices of the Royal Astronomical Society | 2007

The shear testing programme 2 : factors affecting high-precision weak-lensing analyses.

Richard Massey; Catherine Heymans; Joel Bergé; G. M. Bernstein; Sarah Bridle; Douglas Clowe; H. Dahle; Richard S. Ellis; Thomas Erben; Marco Hetterscheidt; F. William High; Christopher M. Hirata; Henk Hoekstra; P. Hudelot; M. Jarvis; David E. Johnston; Konrad Kuijken; V. E. Margoniner; Rachel Mandelbaum; Y. Mellier; Reiko Nakajima; Stephane Paulin-Henriksson; Molly S. Peeples; Chris Roat; Alexandre Refregier; Jason Rhodes; Tim Schrabback; Mischa Schirmer; Uros Seljak; Elisabetta Semboloni

The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak-lensing measurement, in preparation for the next generation of wide-field surveys. We review 16 current and emerging shear-measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. A desirable goal would be the combination of their best elements into one ultimate shear-measurement method. In this analysis, we achieve previously unattained discriminatory precision via a combination of more extensive simulations and pairs of galaxy images that have been rotated with respect to each other. That removes the otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our simulation approach is confirmed by testing the relative calibration of methods on real data. Weak-lensing measurements have improved since the first STEP paper. Several methods now consistently achieve better than 2 per cent precision, and are still being developed. However, we can now distinguish all methods from perfect performance. Our main concern continues to be the potential for a multiplicative shear calibration bias: not least because this cannot be internally calibrated with real data. We determine which galaxy populations are responsible for bias and, by adjusting the simulated observing conditions, we also investigate the effects of instrumental and atmospheric parameters. The simulated point spread functions are not allowed to vary spatially, to avoid additional confusion from interpolation errors. We have isolated several previously unrecognized aspects of galaxy shape measurement, in which focused development could provide further progress towards the sub-per cent level of precision desired for future surveys. These areas include the suitable treatment of image pixellization and galaxy morphology evolution. Ignoring the former effect affects the measurement of shear in different directions, leading to an overall underestimation of shear and hence the amplitude of the matter power spectrum. Ignoring the second effect could affect the calibration of shear estimators as a function of galaxy redshift, and the evolution of the lensing signal, which will be vital to measure parameters including the dark energy equation of state.


The Astrophysical Journal | 2009

Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1

S. Giodini; D. Pierini; Alexis Finoguenov; G. W. Pratt; Hans Boehringer; Alexie Leauthaud; L. Guzzo; H. Aussel; M. Bolzonella; P. Capak; M. Elvis; G. Hasinger; O. Ilbert; J. Kartaltepe; A. M. Koekemoer; S. J. Lilly; Richard Massey; H. J. McCracken; J. Rhodes; M. Salvato; D. B. Sanders; N. Z. Scoville; Shunji S. Sasaki; Vernesa Smolčić; Y. Taniguchi; D. Thompson

We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ≤ z ≤ 1 are selected from the COSMOS 2 deg^2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R_(500). The total sample of 118 groups and clusters with z ≤ 1 spans a range in M_(500) of ~10^(13)-10^(15) M_☉. We find that the stellar mass fraction associated with galaxies at R_(500) decreases with increasing total mass as M^(–0.37 ± 0.04)_(500), independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f^(stars+gas)_(500) = f^(stars)_(500) + f^(gas)_(500)) is found to increase by ~25%, when M_(500) increases from = 5 × 10^(13) M_☉ to = 7 × 10^(14) M_☉. After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of = 5 × 10^(13) M_☉. The discrepancy decreases toward higher total masses, such that it is 1σ at = 7 × 10^(14) M_☉. We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.


The Astrophysical Journal | 2010

A weak lensing study of X-ray groups in the cosmos survey: form and evolution of the mass-luminosity relation

Alexie Leauthaud; Alexis Finoguenov; Jean-Paul Kneib; James E. Taylor; Richard Massey; Jason Rhodes; O. Ilbert; Kevin Bundy; Jeremy L. Tinker; Matthew R. George; P. Capak; Anton M. Koekemoer; David E. Johnston; Yu-Ying Zhang; N. Cappelluti; Richard S. Ellis; M. Elvis; S. Giodini; Catherine Heymans; Oliver Le Fevre; S. J. Lilly; H. J. McCracken; Y. Mellier; Alexandre Refregier; M. Salvato; N. Z. Scoville; George F. Smoot; M. Tanaka; Ludovic Van Waerbeke; M. Wolk

Measurements of X-ray scaling laws are critical for improving cosmological constraints derived with the halo mass function and for understanding the physical processes that govern the heating and cooling of the intracluster medium. In this paper, we use a sample of 206 X-ray-selected galaxy groups to investigate the scaling relation between X-ray luminosity (L_X) and halo mass (M_(200)) where M_(200) is derived via stacked weak gravitational lensing. This work draws upon a broad array of multi-wavelength COSMOS observations including 1.64 degrees^2 of contiguous imaging with the Advanced Camera for Surveys to a limiting magnitude of I_(F814W) = 26.5 and deep XMM-Newton/Chandra imaging to a limiting flux of 1.0 × 10^(–15) erg cm6(–2) s^(–1) in the 0.5-2 keV band. The combined depth of these two data sets allows us to probe the lensing signals of X-ray-detected structures at both higher redshifts and lower masses than previously explored. Weak lensing profiles and halo masses are derived for nine sub-samples, narrowly binned in luminosity and redshift. The COSMOS data alone are well fit by a power law, M_(200) (L_X)^α, with a slope of α = 0.66 ± 0.14. These results significantly extend the dynamic range for which the halo masses of X-ray-selected structures have been measured with weak gravitational lensing. As a result, tight constraints are obtained for the slope of the M-L_X relation. The combination of our group data with previously published cluster data demonstrates that the M-L_X relation is well described by a single power law, α = 0.64 ± 0.03, over two decades in mass, M_(200) ~ 10^(13.5)-10^(15.5) h^(–1)_72 M_☉. These results are inconsistent at the 3.7σ level with the self-similar prediction of α = 0.75. We examine the redshift dependence of the M-L_X relation and find little evidence for evolution beyond the rate predicted by self-similarity from z ~ 0.25 to z ~ 0.


Nature | 2007

Dark matter maps reveal cosmic scaffolding

Richard Massey; Jason Rhodes; Richard S. Ellis; Nick Z. Scoville; Alexie Leauthaud; Alexis Finoguenov; P. Capak; David J. Bacon; H. Aussel; Jean-Paul Kneib; Anton M. Koekemoer; H. J. McCracken; Bahram Mobasher; Sandrine Pires; Alexandre Refregier; Shunji Sasaki; Jean-Luc Starck; Y. Taniguchi; Andy Taylor; James E. Taylor

Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious ‘dark matter’ component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter—whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.


The Astrophysical Journal | 2008

Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222*

Marusa Bradac; S. W. Allen; Tommaso Treu; Harald Ebeling; Richard Massey; R. Glenn Morris; Anja von der Linden; Douglas E. Applegate

We constrain the physical nature of dark matter using the newly identified massive merging galaxy cluster MACS J0025.4−1222. As was previously shown by the example of the Bullet Cluster (1E065756), such systems are ideal laboratories for detecting isolated dark matter, and distinguishing between cold dark matter (CDM) and other scenarios (e.g. self-interacting dark matter, alternative gravity theories). MACS J0025.4−1222 consists of two merging subclusters of similar richness at z = 0.586. We measure the distribution of X-ray emitting gas from Chandra X-ray data and find it to be clearly displaced from the distribution of galaxies. A strong (information from highly distorted arcs) and weak (using weakly distorted background galaxies) gravitational lensing analysis based on Hubble Space Telescope observations and Keck arc spectroscopy confirms that the subclusters have near-equal mass. The total mass distribution in each of the subclusters is clearly offset (at > 4σ significance) from the peak of the hot X-ray emitting gas (the main baryonic component), but aligned with the distribution of galaxies. We measure the fractions of mass in hot gas (0.09 +0.07 −0.03 ) and stars (0.010 +0.007 −0.004 ), consistent with those of typical clusters, finding that dark matter is the dominant contributor to the gravitational field. Under the assumption that the subclusters experienced a head-on collision in the plane of the sky, we obtain an order-of-magnitude estimate of the dark matter self-interaction cross-section of σ/m < 4cm 2 g −1 , re-affirming the results from the Bullet Cluster on the collisionless nature of dark matter. Subject headings: cosmology: dark matter – gravitational lensing – galaxies:clusters:individual:MACS J0025.4−1222


Astrophysical Journal Supplement Series | 2007

The XMM-Newton Wide-Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies

Alexis Finoguenov; L. Guzzo; G. Hasinger; N. Z. Scoville; H. Aussel; H. Böhringer; M. Brusa; P. Capak; N. Cappelluti; A. Comastri; S. Giodini; Richard E. Griffiths; C. D. Impey; Anton M. Koekemoer; Jean-Paul Kneib; A. Leauthaud; O. Le Fèvre; S. Lilly; V. Mainieri; Richard Massey; H. J. McCracken; B. Mobasher; Takashi Murayama; J. A. Peacock; E. Schinnerer; J. D. Silverman; Vernesa Smolčić; Y. Taniguchi; L. Tasca; James E. Taylor

We present the results of a search for galaxy clusters in the first 36 XMM-Newton pointings on the Cosmic Evolution Survey (COSMOS) field. We reach a depth for a total cluster flux in the 0.5-2 keV band of 3 × 10^(-15) ergs cm^(-2) s^(-1), having one of the widest XMM-Newton contiguous raster surveys, covering an area of 2.1 deg^2. Cluster candidates are identified through a wavelet detection of extended X-ray emission. Verification of the cluster candidates is done based on a galaxy concentration analysis in redshift slices of thickness 0.1-0.2 in redshift, using the multiband photometric catalog of the COSMOS field and restricting the search to z S)-log S distribution compares well with previous results, although yielding a somewhat higher number of clusters at similar fluxes. The X-ray luminosity function of COSMOS clusters matches well the results of nearby surveys, providing a comparably tight constraint on the faint-end slope of α = 1.93 ± 0.04. For the probed luminosity range of (8 × 10^(42))-(2 × 10^(44)) ergs s^(-1), our survey is in agreement with and adds significantly to the existing data on the cluster luminosity function at high redshifts and implies no substantial evolution at these luminosities to z = 1.3.

Collaboration


Dive into the Richard Massey's collaboration.

Top Co-Authors

Avatar

Jason Rhodes

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Kneib

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

P. Capak

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Z. Scoville

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge