Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Mitter is active.

Publication


Featured researches published by Richard Mitter.


Science | 2016

Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

Nicholas McGranahan; Andrew Furness; Rachel Rosenthal; Sofie Ramskov; Rikke Birgitte Lyngaa; Sunil Kumar Saini; Mariam Jamal-Hanjani; Gareth A. Wilson; Nicolai Juul Birkbak; Crispin Hiley; Thomas B.K. Watkins; Seema Shafi; Nirupa Murugaesu; Richard Mitter; Ayse U. Akarca; Joseph Linares; Teresa Marafioti; Jake Y. Henry; Eliezer M. Van Allen; Diana Miao; Bastian Schilling; Dirk Schadendorf; Levi A. Garraway; Vladimir Makarov; Naiyer A. Rizvi; Alexandra Snyder; Matthew D. Hellmann; Taha Merghoub; Jedd D. Wolchok; Sachet A. Shukla

The cellular ancestry of tumor antigens One contributing factor in antitumor immunity is the repertoire of neoantigens created by genetic mutations within tumor cells. Like the corresponding mutations, these neoantigens show intratumoral heterogeneity. Some are present in all tumor cells (clonal), and others are present in only a fraction of cells (subclonal). In a study of lung cancer and melanoma, McGranahan et al. found that a high burden of clonal tumor neoantigens correlated with improved patient survival, an increased presence of tumor-infiltrating lymphocytes, and a durable response to immunotherapy. Science, this issue p. 1463 Analysis of the cellular ancestry of tumor neoantigens can predict which are most likely to induce an immune response. As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.


Science | 2014

Spatial and temporal diversity in genomic instability processes defines lung cancer evolution

Elza C de Bruin; Nicholas McGranahan; Richard Mitter; Max Salm; David C. Wedge; Lucy R. Yates; Mariam Jamal-Hanjani; Seema Shafi; Nirupa Murugaesu; Andrew Rowan; Eva Grönroos; Madiha A. Muhammad; Stuart Horswell; Marco Gerlinger; Ignacio Varela; David Jones; John Marshall; Thierry Voet; Peter Van Loo; Doris Rassl; Robert C. Rintoul; Sam M. Janes; Siow Ming Lee; Martin Forster; Tanya Ahmad; David Lawrence; Mary Falzon; Arrigo Capitanio; Timothy T. Harkins; Clarence C. Lee

Spatial and temporal dissection of the genomic changes occurring during the evolution of human non–small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in smoking-related mutations over time, accompanied by an increase in APOBEC-associated mutations. In tumors from former smokers, genome-doubling occurred within a smoking-signature context before subclonal diversification, which suggested that a long period of tumor latency had preceded clinical detection. The regionally separated driver mutations, coupled with the relentless and heterogeneous nature of the genome instability processes, are likely to confound treatment success in NSCLC. Different regions of a human lung tumor harbor different mutations, possibly explaining why the disease is so tough to treat. [Also see Perspective by Govindan] Space, time, and the lung cancer genome Lung cancer poses a formidable challenge to clinical oncologists. It is often detected at a late stage, and most therapies work for only a short time before the tumors resume their relentless growth. Two independent analyses of the human lung cancer genome may help explain why this disease is so resilient (see the Perspective by Govindan). Rather than take a single “snapshot” of the cancer genome, de Bruin et al. and Zhang et al. identified genomic alterations in spatially distinct regions of single lung tumors and used this information to infer the tumors evolutionary history. Each tumor showed tremendous spatial and temporal diversity in its mutational profiles. Thus, the efficacy of drugs may be short-lived because they destroy only a portion of the tumor. Science, this issue p. 251, p. 256; see also p. 169


Neuron | 2012

c-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration

P Arthur-Farraj; Morwena Latouche; D Wilton; Susanne Quintes; Elodie Chabrol; Annbily Banerjee; Ashwin Woodhoo; Billy Jenkins; Mary Rahman; Mark Turmaine; Grzegorz Wicher; Richard Mitter; Linda Greensmith; Axel Behrens; Gennadij Raivich; Rhona Mirsky; Kristjan R. Jessen

Summary The radical response of peripheral nerves to injury (Wallerian degeneration) is the cornerstone of nerve repair. We show that activation of the transcription factor c-Jun in Schwann cells is a global regulator of Wallerian degeneration. c-Jun governs major aspects of the injury response, determines the expression of trophic factors, adhesion molecules, the formation of regeneration tracks and myelin clearance and controls the distinctive regenerative potential of peripheral nerves. A key function of c-Jun is the activation of a repair program in Schwann cells and the creation of a cell specialized to support regeneration. We show that absence of c-Jun results in the formation of a dysfunctional repair cell, striking failure of functional recovery, and neuronal death. We conclude that a single glial transcription factor is essential for restoration of damaged nerves, acting to control the transdifferentiation of myelin and Remak Schwann cells to dedicated repair cells in damaged tissue.


The New England Journal of Medicine | 2017

Tracking the Evolution of Non–Small-Cell Lung Cancer

Mariam Jamal-Hanjani; Gareth A. Wilson; Nicholas McGranahan; Nicolai Juul Birkbak; Thomas B.K. Watkins; Selvaraju Veeriah; Seema Shafi; Diana Johnson; Richard Mitter; Rachel Rosenthal; Max Salm; Stuart Horswell; Mickael Escudero; Nik Matthews; Andrew Rowan; Tim Chambers; David Moore; Samra Turajlic; Hang Xu; Siow Ming Lee; Martin Forster; Tanya Ahmad; Crispin Hiley; Christopher Abbosh; Mary Falzon; Elaine Borg; Teresa Marafioti; David Lawrence; Martin Hayward; Shyam Kolvekar

BACKGROUND Among patients with non‐small‐cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early‐stage NSCLC. METHODS In this prospective cohort study, we performed multiregion whole‐exome sequencing on 100 early‐stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence‐free survival. RESULTS We observed widespread intratumor heterogeneity for both somatic copy‐number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution were found in more than 75% of the tumors and were common in PIK3CA and NF1 and in genes that are involved in chromatin modification and DNA damage response and repair. Genome doubling and ongoing dynamic chromosomal instability were associated with intratumor heterogeneity and resulted in parallel evolution of driver somatic copy‐number alterations, including amplifications in CDK4, FOXA1, and BCL11A. Elevated copy‐number heterogeneity was associated with an increased risk of recurrence or death (hazard ratio, 4.9; P=4.4×10‐4), which remained significant in multivariate analysis. CONCLUSIONS Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601.)


Nature Neuroscience | 2010

An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons

Catia Andreassi; Carola Zimmermann; Richard Mitter; Salvatore Fusco; Serena De Vita; Adolfo Saiardi; Antonella Riccio

mRNA localization is an evolutionary conserved mechanism that underlies the establishment of cellular polarity and specialized cell functions. To identify mRNAs localized in subcellular compartments of developing neurons, we took an original approach that combines compartmentalized cultures of rat sympathetic neurons and sequential analysis of gene expression (SAGE). Unexpectedly, the most abundant transcript in axons was mRNA for myo-inositol monophosphatase-1 (Impa1), a key enzyme that regulates the inositol cycle and the main target of lithium in neurons. A novel localization element within the 3′ untranslated region of Impa1 mRNA specifically targeted Impa1 transcript to sympathetic neuron axons and regulated local IMPA1 translation in response to nerve growth factor (NGF). Selective silencing of IMPA1 synthesis in axons decreased nuclear CREB activation and induced axonal degeneration. These results provide insights into mRNA transport in axons and reveal a new NGF-responsive localization element that directs the targeting and local translation of an axonal transcript.


PLOS Biology | 2014

Tracking genomic cancer evolution for precision medicine: the lung TRACERx study.

Mariam Jamal-Hanjani; Alan Hackshaw; Yenting Ngai; Jacqueline A. Shaw; Caroline Dive; Sergio A. Quezada; Gary Middleton; Elza C de Bruin; John Le Quesne; Seema Shafi; Mary Falzon; Stuart Horswell; Fiona Blackhall; Iftekhar Khan; Sam M. Janes; Marianne Nicolson; David S. Lawrence; Martin Forster; Dean A. Fennell; Siow Ming Lee; J.F. Lester; Keith M. Kerr; Salli Muller; Natasha Iles; Sean Smith; Nirupa Murugaesu; Richard Mitter; Max Salm; Aengus Stuart; Nik Matthews

TRACERx, a prospective study of patients with primary non-small cell lung cancer, aims to map the genomic landscape of lung cancer by tracking clonal heterogeneity and tumour evolution from diagnosis to relapse.


Cancer Discovery | 2015

Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy

Nirupa Murugaesu; Gareth A. Wilson; Nicolai Juul Birkbak; Thomas B.K. Watkins; Nicholas McGranahan; Sacheen Kumar; Nima Abbassi-Ghadi; Max Salm; Richard Mitter; Stuart Horswell; Andrew Rowan; Benjamin Phillimore; Jennifer Biggs; Sharmin Begum; Nik Matthews; Daniel Hochhauser; George B. Hanna; Charles Swanton

UNLABELLED Esophageal adenocarcinomas are associated with a dismal prognosis. Deciphering the evolutionary history of this disease may shed light on therapeutically tractable targets and reveal dynamic mutational processes during the disease course and following neoadjuvant chemotherapy (NAC). We exome sequenced 40 tumor regions from 8 patients with operable esophageal adenocarcinomas, before and after platinum-containing NAC. This revealed the evolutionary genomic landscape of esophageal adenocarcinomas with the presence of heterogeneous driver mutations, parallel evolution, early genome-doubling events, and an association between high intratumor heterogeneity and poor response to NAC. Multiregion sequencing demonstrated a significant reduction in thymine to guanine mutations within a CpTpT context when comparing early and late mutational processes and the presence of a platinum signature with enrichment of cytosine to adenine mutations within a CpC context following NAC. Esophageal adenocarcinomas are characterized by early chromosomal instability leading to amplifications containing targetable oncogenes persisting through chemotherapy, providing a rationale for future therapeutic approaches. SIGNIFICANCE This work illustrates dynamic mutational processes occurring during esophageal adenocarcinoma evolution and following selective pressures of platinum exposure, emphasizing the iatrogenic impact of therapy on cancer evolution. Identification of amplifications encoding targetable oncogenes maintained through NAC suggests the presence of stable vulnerabilities, unimpeded by cytotoxics, suitable for therapeutic intervention.


Cell Stem Cell | 2013

HIF-2α Protects Human Hematopoietic Stem/Progenitors and Acute Myeloid Leukemic Cells from Apoptosis Induced by Endoplasmic Reticulum Stress

Kevin Rouault-Pierre; Lourdes Lopez-Onieva; Katie Foster; Fernando Anjos-Afonso; Isabelle Lamrissi-Garcia; Martin Serrano-Sanchez; Richard Mitter; Zoran Ivanovic; Hubert de Verneuil; John G. Gribben; David Taussig; Hamid Reza Rezvani; Frédéric Mazurier; Dominique Bonnet

Hematopoietic stem and progenitor cells (HSPCs) are exposed to low levels of oxygen in the bone marrow niche, and hypoxia-inducible factors (HIFs) are the main regulators of cellular responses to oxygen variation. Recent studies using conditional knockout mouse models have unveiled a major role for HIF-1α in the maintenance of murine HSCs; however, the role of HIF-2α is still unclear. Here, we show that knockdown of HIF-2α, and to a much lesser extent HIF-1α, impedes the long-term repopulating ability of human CD34(+) umbilical cord blood cells. HIF-2α-deficient HSPCs display increased production of reactive oxygen species (ROS), which subsequently stimulates endoplasmic reticulum (ER) stress and triggers apoptosis by activation of the unfolded-protein-response (UPR) pathway. HIF-2α deregulation also significantly decreased engraftment ability of human acute myeloid leukemia (AML) cells. Overall, our data demonstrate a key role for HIF-2α in the maintenance of human HSPCs and in the survival of primary AML cells.


Cell | 2014

RECQL5 Controls Transcript Elongation and Suppresses Genome Instability Associated with Transcription Stress

Marco Saponaro; Theodoros Kantidakis; Richard Mitter; Gavin Kelly; Mark Heron; Hannah Williams; Johannes Söding; Aengus Stewart; Jesper Q. Svejstrup

Summary RECQL5 is the sole member of the RECQ family of helicases associated with RNA polymerase II (RNAPII). We now show that RECQL5 is a general elongation factor that is important for preserving genome stability during transcription. Depletion or overexpression of RECQL5 results in corresponding shifts in the genome-wide RNAPII density profile. Elongation is particularly affected, with RECQL5 depletion causing a striking increase in the average rate, concurrent with increased stalling, pausing, arrest, and/or backtracking (transcription stress). RECQL5 therefore controls the movement of RNAPII across genes. Loss of RECQL5 also results in the loss or gain of genomic regions, with the breakpoints of lost regions located in genes and common fragile sites. The chromosomal breakpoints overlap with areas of elevated transcription stress, suggesting that RECQL5 suppresses such stress and its detrimental effects, and thereby prevents genome instability in the transcribed region of genes.


The EMBO Journal | 2011

A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome.

Mark P. Dodding; Richard Mitter; Ashley C. Humphries; Michael Way

Transport of cargoes by kinesin‐1 is essential for many cellular processes. Nevertheless, the number of proteins known to recruit kinesin‐1 via its cargo binding light chain (KLC) is still quite small. We also know relatively little about the molecular features that define kinesin‐1 binding. We now show that a bipartite tryptophan‐based kinesin‐1 binding motif, originally identified in Calsyntenin is present in A36, a vaccinia integral membrane protein. This bipartite motif in A36 is required for kinesin‐1‐dependent transport of the virus to the cell periphery. Bioinformatic analysis reveals that related bipartite tryptophan‐based motifs are present in over 450 human proteins. Using vaccinia as a surrogate cargo, we show that regions of proteins containing this motif can function to recruit KLC and promote virus transport in the absence of A36. These proteins interact with the kinesin light chain outside the context of infection and have distinct preferences for KLC1 and KLC2. Our observations demonstrate that KLC binding can be conferred by a common set of features that are found in a wide range of proteins associated with diverse cellular functions and human diseases.

Collaboration


Dive into the Richard Mitter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seema Shafi

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge